THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Закон сохранения энергии определяет в самом общем виде энергетический баланс при всевозможных изменениях в любой системе. Запишем его следующим образом:

где A внеш - работа, совершенная над рассматриваемой системой внешними силами, ΔW - изменение энергии системы, Q - количество теплоты, выделяемое в системе. Договоримся, что если A внеш > 0, то над системой совершают положительную работу, а если A внеш < 0, положительную работу совершает система; если ΔW > 0, то энергия системы увеличивается, а если ΔW < 0, энергия уменьшается; наконец, если Q > 0, то в системе выделяется тепло, а если Q < 0, тепло системой поглощается.

В этой статье мы рассмотрим, как закон сохранения энергии «работает» в электростатике. В общем случае электростатическая система содержит взаимодействующие между собой заряды, находящиеся в электрическом поле.

Рассмотрим каждое слагаемое в уравнении (1) по отдельности.

Начнем с энергии. Энергия взаимодействия зарядов выражается через характеристики электрического поля этой системы зарядов. Так, например, энергия заряженного конденсатора емкостью C задается известным выражением

(2)

где q - заряд обкладок, U - напряжение между ними. Напомним, что конденсатор - это система двух проводников (обкладок, пластин), обладающая следующим свойством: если с одной обкладки на другую перенести заряд q (т. е. одну обкладку зарядить зарядом + q , а другую –q ), то все силовые линии созданного таким образом поля будут начинаться на одной (положительно заряженной) обкладке и заканчиваться на другой. Поле конденсатора существует только внутри него.

Энергию заряженного конденсатора можно представить также как энергию поля, локализованного в пространстве между пластинами с плотностью энергии где E - напряженность поля. В сущности, именно этот факт дает основание говорить о поле как об объекте, реально существующем, - у этого объекта есть плотность энергии. Но надо помнить, что это просто эквивалентный способ определения энергии взаимодействия зарядов (которую теперь мы называем энергией электрического поля). Таким образом, мы можем считать энергию конденсатора как по формулам (2), так и по формуле

(3)

где V - объем конденсатора. Последней формулой легко пользоваться, конечно, только в случае однородного поля, но представление энергии в такой форме очень наглядно, а потому удобно.

Конечно, кроме энергии взаимодействия зарядов (энергии электрического поля) в энергию системы может входить и кинетическая энергия заряженных тел, и их потенциальная энергия в поле тяжести, и энергия пружин, прикрепленных к телам, и т. п.

Теперь о работе внешних сил. Помимо обычной механической работы A мех (например, по раздвиганию пластин конденсатора), для электрической системы можно говорить о работе внешнего электрического поля. Например, о работе батареи, заряжающей или перезаряжающей конденсатор. Задача батареи - создать фиксированную, присущую данному источнику разность потенциалов между теми телами, к которым она присоединена. Делает она это единственно возможным способом - забирает заряд от одного тела и передает его другому. Источник никогда не создает заряды, а только перемещает их. Общий заряд системы при этом сохраняется - это один из краеугольных законов природы.

В источниках разных конструкций электрическое поле, необходимое для перемещения зарядов, создают различные «механизмы». В батареях и аккумуляторах - это электрохимические реакции, в динамомашинах - электромагнитная индукция. Существенно, что для выбранной системы зарядов (заряженных тел) это поле - внешнее, стороннее. Когда через источник с ЭДС от отрицательного полюса к положительному протекает заряд Δq , сторонние силы совершают работу

При этом если Δq > 0, то A бат > 0 - батарея разряжается; если же Δq < 0, то A бат < 0 - батарея заряжается и в ней накапливается химическая (или магнитная) энергия.

Наконец, о выделении тепла. Заметим только, что это джоулево тепло, т.е. тепло, связанное с протеканием тока через сопротивление.

Теперь обсудим несколько конкретных задач.

Задача 1 . Два одинаковых плоских конденсатора емкостью C каждый присоединены к двум одинаковым батареям с ЭДС . В какой-то момент один конденсатор отключают от батареи, а другой оставляют присоединенным. Затем медленно разводят пластины обоих конденсаторов, уменьшая емкость каждого в n раз. Какая механическая работа совершается в каждом случае?

Если процесс изменения заряда на конденсаторе осуществляется все время медленно, тепло выделяться не будет. Действительно, если через резистор сопротивлением R протек заряд Δq за время t , то на резисторе за это время выделится количество теплоты

При достаточно больших t количество теплоты Q может оказаться сколь угодно малым.

В первом случае фиксирован заряд на пластинах (батарея отключена), равный Механическая работа определяется изменением энергии конденсатора:

Во втором случае фиксирована разность потенциалов на конденсаторе и работает батарея, поэтому

Через батарею протекает заряд

Этот заряд меньше нуля, значит, батарея заряжается и ее работа

Энергия поля в конденсаторе уменьшается:

Таким образом,

Зарядка батареи происходит за счет работы по раздвиганию пластин и за счет энергии конденсатора.

Заметим, что слова про раздвигание пластин существенной роли не играют. Такой же результат будет при любых других изменениях, приводящих к уменьшению емкости в n раз.

Задача 2 . В схеме, изображенной на рисунке, найдите количество теплоты, выделившееся в каждом резисторе после замыкания ключа. Конденсатор емкостью C 1 заряжен до напряжения U 1 , а конденсатор емкостью C 2 - до напряжения U 2 . Сопротивления резисторов R 1 и R 2 .

Закон сохранения энергии (1) для данной системы имеет вид

Начальная энергия конденсаторов равна

Для определения энергии в конечном состоянии воспользуемся тем, что суммарный заряд конденсаторов не может измениться. Он равен (для случаев, когда конденсаторы были соединены одноименно или разноименно заряженными пластинами соответственно). После замыкания ключа этим зарядом оказывается заряжен конденсатор емкостью C 1 + C 2 (конденсаторы емкостями C 1 и C 2 соединены параллельно). Таким образом,

и

Как и должно быть, в обоих случаях выделяется тепло - есть джоулевы потери. Замечательно, что выделившееся количество теплоты не зависит от сопротивления цепи - при малых сопротивлениях текут большие токи и наоборот.

Теперь найдем, как количество теплоты Q распределяется между резисторами. Через сопротивления R 1 и R 2 в каждый момент процесса перезарядки текут одинаковые токи, значит, в каждый момент мощности, выделяемые на сопротивлениях, равны

и

Следовательно,

Кроме того, . Поэтому окончательно

Задача 3 . В схеме на рисунке 2 конденсатор емкостью C заряжен до напряжения U . Какое количество химической энергии запасется в аккумуляторе с ЭДС после замыкания ключа? Какое количество теплоты выделится в резисторе?

Первоначальный заряд на конденсаторе . После окончания перезарядки заряд на конденсаторе станет равным . Протекший через батарею заряд в случае, когда к минусу батареи подключена отрицательно заряженная обкладка конденсатора, будет равен

В противном случае и при этом аккумулятор будет разряжаться (Δq > 0). А в первом случае при аккумулятор заряжается (Δq < 0), и количество химической энергии, запасенной в аккумуляторе после замыкания ключа, равно работе батареи:

Теперь запишем закон сохранения энергии (1) –

– и найдем выделившееся количество теплоты:

Задача 4 . Плоский конденсатор находится во внешнем однородном поле с напряженностью , перпендикулярной пластинам. На пластинах площадью S распределены заряды +q и –q . Расстояние между пластинами d . Какую минимальную работу надо совершить, чтобы поменять пластины местами? Расположить параллельно полю? Вынуть из поля?

Работа будет минимальной, когда процесс проводится очень медленно - при этом не выделяется тепло. Тогда, согласно закону сохранения энергии,

Чтобы найти ΔW , воспользуемся формулой (3). Поле между пластинами представляет собой суперпозицию поля данного плоского конденсатора –

– и внешнего поля .

При перемене пластин местами поле меняется на –, а поле снаружи не меняется, т. е. изменение энергии системы связано с изменением ее плотности между пластинами конденсатора:

Если направления векторов и были одинаковы, то плотность энергии между пластинами уменьшилась после перемены пластин местами, а если направления были противоположны, то плотность энергии увеличилась. Таким образом, в первом случае - конденсатор хочет сам развернуться и его надо удерживать (A < 0), а во втором случае

Когда пластины конденсатора расположены параллельно полю и перпендикулярны друг другу. Энергия поля внутри конденсатора в этом случае равна . Тогда

Когда конденсатор вынули из поля, в том месте, где он был, поле стало , а в нем самом теперь поле , т.е. ΔW и A min оказываются такими же, как и в предыдущем случае.

Задача 5. Конденсатор емкостью С без диэлектрика заряжен зарядом q . Какое количество теплоты выделится в конденсаторе, если его заполнить веществом с диэлектрической проницаемостью ε? То же, но конденсатор присоединен к батарее с ЭДС .

При заливании диэлектрика емкость конденсатора увеличилась в ε раз.

В первом случае фиксирован заряд на пластинах, внешних сил нет, и закон сохранения энергии (1) имеет вид

Тепло выделяется за счет уменьшения энергии взаимодействия зарядов.

Во втором случае есть работа батареи и фиксировано напряжение на конденсаторе:

Упражнения

1. Два одинаковых плоских конденсатора емкостью С каждый соединены параллельно и заряжены до напряжения U . Пластины одного из конденсаторов медленно разводят на большое расстояние. Какая при этом совершается работа?

2. Два конденсатора, каждый емкостью С , заряжены до напряжения U и соединены через резистор (рис. 4). Пластины одного из конденсаторов быстро раздвигают, так что расстояние между ними увеличивается вдвое, а заряд на пластинах за время их перемещения не изменяется. Какое количество теплоты выделится в резисторе?

3. Плоский воздушный конденсатор присоединен к батарее с ЭДС . Площадь пластин S , расстояние между ними d . В конденсаторе находится металлическая плита толщиной d 1 , параллельная пластинам (рис. 5). Какую минимальную работу нужно затратить, чтобы удалить плиту из конденсатора?

4. Большая тонкая проводящая пластина площадью S и толщиной d помещена в однородное электрическое поле с напряженностью , перпендикулярной поверхности пластины. Какое количество теплоты выделится в пластине, если поле мгновенно выключить? Какую минимальную работу надо совершить, чтобы удалить пластину из поля?

5. Одна из пластин плоского конденсатора подвешена на пружине (рис. 6). Площадь каждой пластины S , расстояние между ними в начальный момент d . Конденсатор на короткое время подключили к батарее, и он зарядился до напряжения U . Какой должна быть минимальная жесткость пружины, чтобы не произошло касание пластин? Смещением пластин за время зарядки пренебречь.

Ответы .

1. (весь заряд оказывается на конденсаторе, пластины которого не раздвигали).

2. (в первый момент после разведения пластин замкнутыми друг на друга оказываются конденсатор емкостью С с напряжением U и конденсатор емкостью С /2 с напряжением 2U ).

3. (минимальная работа по удалению плиты равна разности изменения энергии конденсатора и работы батареи).

4. (сразу после выключения внешнего поля в пластине есть поле поляризационных зарядов, напряженность которого равна Е\ удаление пластины из поля эквивалентно созданию поля с напряженностью Е в объеме пластины).

5. (результат получается из закона сохранения энергии и из условия равновесия пластины ).

2.12.1 Сторонний источник электромагнитного поля и электрического тока в электрической цепи.

☻ Сторонний источник является такой составной частью электрической цепи, без которой электрический ток в цепи не возможен. Это делит электрическую цепь на две части, одна из которых способна проводить ток, но не возбуждает его, а другая “сторонняя”– проводит ток и возбуждает его. Под действием ЭДС стороннего источника в цепи возбуждается не только электрический ток, но и электромагнитное поле, причем то и другое сопровождается при этом передачей энергии от источника в цепь.

2.12.2 Источник ЭДС и источник тока.

☻ Сторонний источник в зависимости от своего внутреннего сопротивления может быть источником ЭДСили источником тока

Источник ЭДС:
,

не зависит от.

Источник тока:
,


не зависит от.

Таким образом, любой источник, который выдерживает стабильное напряжение в цепи при изменении в ней тока, может рассматриваться как источник ЭДС. Это относится и к источникам стабильного напряжения в электрических сетях. Очевидно, условия
или
для реальных сторонних источников следует рассматривать как идеализированные приближения, удобные для анализа и расчета электрических цепей. Так при
взаимодействие стороннего источника с цепью определяется простыми равенствами

,
,
.

        Электромагнитное поле в электрической цепи.

☻ Сторонние источники являются либо накопителями, либо генераторами энергии. Передача энергии источниками в цепь происходит только через электромагнитное поле, которое возбуждается источником во всех элементах цепи, независимо от их технических особенностей и прикладного значения, а также от сочетания физических свойств в каждом из них. Именно электромагнитное поле является тем первичным фактором, который задает распределение энергии источника по элементам цепи и определяет физические процессы в них, в том числе и электрический ток.

2.12.4 Сопротивление в цепях постоянного и переменного тока.

Рис 2.12.4

Обобщенные схемы одноконтурных цепей постоянного и переменного тока.

☻ В простых одноконтурных цепях постоянного и переменного тока зависимость тока от ЭДС источника можно выразить подобными формулами

,
.

Это дает возможность и сами цепи представить подобными схемами, как это показано на рис.2.12.4.

Важно подчеркнуть, что в цепи переменного тока величина означает не активное сопротивление цепи, а импеданс цепи, который превосходит активное сопротивление по той причине, что индуктивные и емкостные элементы цепи оказывают переменному току дополнительное реактивное сопротивление, так что

,

,
.

Реактивные сопротивления иопределяются частотой переменного тока, индуктивностьюиндуктивных элементов (катушек) и емкостьюемкостных элементов (кондесаторов).

2.12.5 Фазовый сдвиг

☻ Элементы цепи с реактивными сопротивлениями вызывают в цепи переменного тока особое электромагнитное явление- сдвиг по фазе между ЭДС и током

,
,

где - фазовый сдвиг, возможные значения которого определяются уравнением

.

Отсутствие фазового сдвига возможно в двух случаях, когда
или когда емкостные и индуктивные элементы в цепи отсутствуют. Фазовый сдвиг затрудняет вывод мощности источника в электрическую цепь.

2.12.6 Энергия электромагнитного поля в элементах цепи.

☻ Энергия электромагнитного поля в каждом элементе цепи состоит из энергии электрического поля и энергии магнитного поля

.

Однако элемент цепи может быть так выполнен, что для него одно из слагаемых этой суммы будет доминирующим, а другое – не существенным. Так при характерных частотах переменного тока в конденсаторе
, а в катушке, наоборот,
. Поэтому можно считать, что конденсатор является накопителем энергии электрического поля, а катушка-накопителем энергии магнитного поля и для них соответственно

,
,

где учтено, что для конденсатора
, а для катушки
. Две катушки в одной цепи могут быть индуктивно независимыми или же индуктивно связанными через свое общее магнитное поле. В последнем случае энергия магнитных полей катушек дополняется энергией их магнитного взаимодействия

,

,
.

Коэффициент взаимной индукции
зависит от степени индуктивной связи между катушками, в частности от их взаимного расположения. Индуктивная связь может быть не существенной или отсутствовать полностью, тогда
.

Характерным элементом электрической цепи является резистор сопротивлением . Для него энергия электромагнитного поля
, т.к.
. Поскольку в резисторе энергия электрического поля испытывает необратимое превращение в энергию теплового движения, то для резистора

,

где количество теплоты соответствует закону Джоуля-Ленца.

Особым элементом электрической цепи является ее электромеханический элемент, способный при прохождении через него электрического тока выполнять механическую работу. Электрическим током в подобном элементе возбуждается сила или момент силы, под действием которых происходят линейные или угловые перемещения самого элемента или его частей относительно друг друга. Эти механические явления, связанные с электрическим током, сопровождаются превращением энергии электромагнитного поля в элементе в его механическую энергию, так что

где работа
выражается в соответствии с ее механическим определением.

2.12.7 Закон сохранения и превращения энергии в электрической цепи.

☻ Сторонний источник является не только источником ЭДС, но и источником энергии в электрической цепи. За время
от источника в цепь поступает энергия, равная работе ЭДС источника

где
- мощность источника, или что тоже, интенсивность поступления энергии от источника в цепь. Энергия источника превращается в цепи в другие виды энергии. Так в одноконтурной цепи
с механическим элементом работа источника сопровождается изменением энергии электромагнитного поля во всех элементах цепи в полном соответствии с энергетическим балансом

Данное уравнение для рассматриваемой цепи выражает законы сохранения энергии. Из него следует

.

После соответствующих подстановок уравнение баланса мощности можно представить в виде

.

Это уравнение в обобщенной форме выражает закон сохранения энергии в электрической цепи на основе понятия мощности.

        Закон

Кирхгофа

☻ После дифференцирования и сокращения тока из представленного закона сохранения энергии как следствии вытекает закон Кирхгофа

где в замкнутом контуре перечисленные напряжения на элементах цепи означают

,
,

,
,
.

2.12.9 Применение закона сохранения энергии для расчета электрической цепи.

☻ Приведенные уравнения закона сохранения энергии и закона Кирхгофа относятся только к квазистационарным токам, при которых цепь не является источником излучения электромагнитного поля. Уравнение закона сохранения энергии позволяет в простой и наглядной форме анализировать работу многочисленных одноконтурных электрических цепей как переменного, так и постоянного тока.

Полагая константы
равными нулю по отдельности или в их сочетании, можно рассчитывать разные варианты электрических цепей, в том числе при
и
. Ниже рассматриваются некоторые варианты расчета таких цепей.

2.12.10 Цепь
при

☻ Одноконтурная цепь, в которой через резистор заряжается конденсатор от источника с постоянной ЭДС (
). Принимается:
,
,
, а также
при
. При таких условиях закон сохранения энергии для данной цепи может быть записан в следующих равнозначных вариантах

,

,

.

Из решения последнего уравнения следует:

,
.

2.12.11 Цепь
при

☻ Одноконтурная цепь, в которой источник постоянной ЭДС (
) замыкается на элементы и. Принимается:
,
,
, а также
при
. При таких условиях закон сохранения энергии для данной цепи можно представить в следующих равнозначных вариантах

,

,

.

Из решения последнего уравнения следует

.

2.12.12 Цепь
при
и

☻ Одноконтурная цепь без источника ЭДС и без резистора, в которой заряженный конденсатор замыкается на индуктивный элемент. Принимается:
,
,
,
,
, а также при

и
. При таких условиях закон сохранения энергии для данной цепи с учетом того, что

,

,

.

Последнее уравнение соответствует свободным незатухающим колебаниям. Из его решения следует

,
,

,
,
.

Данная цепь является колебательным контуром.

2.12.13 Цепь RLC при

☻ Одноконтурная цепь без источника ЭДС, в которой заряженный конденсатор С замыкается на элементы цепи R и L. Принимается:
,
, а также при

и
. При таких условиях законно закон сохранения энергии для данной цепи с учетом того, что
, может быть записан в следующих вариантах

,

,

.

Последнее уравнение соответствует свободным затухающим колебаниям. Из его решения следует

,

,
,
,
.

Данная цепь является колебательным контуром с диссипативным элементом – резистором, из-за которого общая энергия электромагнитного поля в ходе колебаний убывает.

2.12.14 Цепь RLC при

☻ Одноконтурная цепь RCL представляет собой колебательный контур с диссипативным элементом. В цепи действует переменная ЭДС
и возбуждает в ней вынужденные колебания, в том числе и резонанс.

Принимается:
. При этих условиях закон сохранения энергии может быть записан в нескольких равнозначных вариантах.

,

,

,

Из решения последнего уравнения следует, что колебания тока в цепи являются вынужденными и происходят с частотой действующей ЭДС
, но со сдвигом фаз по отношению к ней, так что

,

где – фазовый сдвиг, значение которого определяется уравнением

.

Поступающая в цепь от источника мощность переменна

Усредненное значение этой мощности по одному периоду колебаний определяется выражением

.

Рис 2.12.14

Резонанс зависимости

Таким образам выводимая из источника в цепь мощность определяется фазовым сдвигом. Очевидно при его отсутствии указанная мощность становиться максимальной и это соответствует резонансу в цепи. Он достигается потому, что сопротивление цепи при отсутствии фазового сдвига принимает минимальное значение, равное только активному сопротивлению.

.

Отсюда следует, что при резонансе выполняются условия.

,
,
,

где – резонансная частота.

При вынужденных колебаниях тока его амплитуда зависит от частоты

.

Резонансное значение амплитуды достигается при отсутствии фазового сдвига, когда
и
. Тогда

,

На рис. 2.12.14 показана резонансная кривая
при вынужденных колебаниях в цепиRLC.

2.12.15 Механическая энергия в электрической цепях

☻ Механическая энергия возбуждается особыми электромеханическими элементами цепи, которые при прохождении по ним электрического тока выполняют механическую работу. Это могут быть электрические двигатели, электромагнитные вибраторы и др. Электрическим током в этих элементах возбуждаются силы или моменты сил, под действием которых происходят линейные, угловые или колебательные перемещения, при этом электромеханический элемент становиться носителем механической энергии

Варианты технической реализации электромеханических элементов практически безграничны. Но в любом случае происходит одно и тоже физическое явление – превращение энергии электромагнитного поля в механическую энергию

.

Важно подчеркнуть, что это превращение происходит в условиях электрической цепи и при безусловном выполнении закона сохранения энергии. Следует учесть, что электромеханический элемент цепи при любом своем назначении и техническом исполнении является накопителем энергии электромагнитного поля
. Она накапливается на внутренних емкостных или индуктивных частях электромеханического элемента, между которыми и возбуждается механическое взаимодействие. При этом механическая мощность электромеханического элемента цепи определяется не энергией
, а производной по времени от нее, т.е. интенсивностью ее измененияР внутри самого элемента

.

Таким образом, в случае простой цепи, когда сторонний источник ЭДС замкнут только на электромеханический элемент, закон сохранения энергии представляется в виде

,

,

где учтены неизбежные необратимые тепловые потери мощности стороннего источника. В случае более сложной цепи, в которой есть дополнительные накопители энергии электромагнитного поля W , закон сохранения энергии записывается в виде

.

Учитывая, что
и
, последнее уравнение можно записать в виде

.

В простой цепи
и тогда

.

Более строгий подход требует учета процессов трения, которые дополнительно уменьшают полезную механическую мощность электромеханического элемента цепи.

Являются одной из форм закона сохранения энергии и относятся к фундаментальным законам природы.

Первый закон Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих через эту поверхность должно быть равно количеству входящих зарядов. Основание этого принципа очевидно, т.к. при его нарушении электрические заряды внутри поверхности должны были бы либо исчезать, либо возникать без видимых причин.

Если заряды перемещаются внутри проводников, то они образуют в них электрический ток. Величина электрического тока может измениться только в узле цепи, т.к. связи считаются идеальными проводниками. Поэтому, если окружить узел произвольной поверхностью S (рис. 1), то потоки зарядов через эту поверхность будут тождественны токам в проводниках образующих узел и суммарный ток в узле должен быть равным нулю.

Для математической записи этого закона нужно принять систему обозначений направлений токов по отношению к рассматриваемому узлу. Можно считать токи направленные к узлу положительными, а от узла – отрицательными. Тогда уравнение Кирхгофа для узла рис. 1 будет иметь вид или .

Обобщая сказанное на произвольное число ветвей сходящихся в узле, можно сформулировать первый закон Кирхгофа следующим образом:

Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным.

При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно . При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании этих токов в направлении противоположном изначально принятому.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать энергию, нарушая закон ее сохранения.

Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:

Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

Общее число уравнений N в системе равно числу ветвей минус число ветвей, содержащих источники тока , т.е. .

Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число не может быть больше числа узлов минус один.

Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

Сформулируем алгоритм составления системы уравнений по законам Кирхгофа:

Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

Рассмотрим этот алгоритм на примере рис 2.

Здесь светлыми стрелками обозначены выбранные произвольно выбранные направления токов в ветвях цепи. Ток в ветви с не может быть выбран произвольно, т.к. здесь он определяется действием источника тока .

Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

Число узлов цепи равно трем (a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

По второму закону Кирхгофа нужно составить два уравнения. Всего для данной электрической цепи можно составить шесть контуров . Из этого числа нужно исключить контуры, замыкающиеся по ветви с источником тока. Тогда останутся только три возможных контура (рис. 2). Выбирая любую пару из трех, мы можем обеспечить условие, чтобы все ветви, кроме ветви с источником тока попали по крайней мере в один из контуров. Остановимся на первом и втором контурах и зададим произвольно направление их обхода как показано на рисунке стрелками. Тогда

Несмотря на то, что при выборе контуров и составлении уравнений все ветви с источниками тока должны быть исключены, второй закон Кирхгофа соблюдается и для них. При необходимости определения падения напряжения на источнике тока или на других элементах ветви с источником тока это можно сделать после решения системы уравнений. Например, на рис. 2 можно создать замкнутый контур из элементов , и , и для него будет справедливо уравнение

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка. Пусть имеется некоторый участок цепи (рис. 1.7), крайние точки которого обозначены буквами а и b. Пусть ток I течет от точки а к точке b (от более высокого потенциала к более низкому). Следовательно, потенциал точки а(φ a) выше потенциала точки b(φ b) на значение, равное произведению тока I на сопротивление R : φ a =φ b +IR.

Рис. 1.7

В соответствии с определением напряжение между точками а и b U ab = φ a - φ b .

Следовательно, U ab =IR , т.е. напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на значение этого сопротивления.

В электротехнике разность потенциалов на концах сопротивления принято называть либо напряжением на сопротивлении, либо падением напряжения.

Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

Рассмотрим вопрос о напряжении на участке цепи, содержащей кроме сопротивления R , ЭДС Е (рис. 1.8, а , б). Найдем разность потенциалов (напряжение) между точками а и с для этих участков. По определению U a с = φ a - φ с . Выразим потенциал точки а через потенциал точки с . При перемещении от точки с к точке b встречно направлению ЭДС Е (см. рис. 1.8, а ) потенциал точки b оказывается меньше, чем потенциал точки с , на значение ЭДС Е: φ b = φ c -E . При перемещении от точки с к точке b согласно направлению ЭДС Е (рис.1.8, б ) потенциал точки b больше, чем потенциал точки с ,на значение ЭДС: φ b = φ c +E .

Так как ток течет от более высокого потенциала к более низкому, в обеих схемах потенциал точки а выше потенциала точки b на величину падения напряжения на сопротивлении R а = φ b +IR .

а) б )

Рис. 1.8

Таким образом, для рис. 1.8, а :

(1.1)

для рис. 1.8, б:

(1.2)

Положительное направление напряжения U a с показывают стрелкой от а к с . Согласно определению, U са = φ с - φ а, поэтому U ас =-U са, т.е. изменение чередования индексов равносильно изменению знака этого напряжения. Следовательно, напряжение может быть как положительной величиной, так и отрицательной.

Закон Ома для участка цепи, не содержащего ЭДС Е, устанавливает связь между током и напряжением на этом участке. Применительно к рис.1.7

Или . (1.3)

Закон Ома для участка цепи, содержащего источник ЭДС Е , позволяет найти ток этого участка по известной разности потенциалов (φ a - φ с) на концах этого участка цепи и имеющейся на участке ЭДС Е.

Так, из уравнения (1.1) для схемы рис.1.8, а следует

.

Из уравнения (1.2) для схемы рис.1.8, б следует:

.

В общем случае

. (1.4)

Все электрические цепи подчиняются первому и второму законам Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко:

1) алгебраическая сумма токов, подтекающих к какому-либо узлу схемы, равна нулю;

2) сумма подтекающих клюбому узлу токов равна сумме утекающихот этого узла токов.

Рис. 1.9

Применительно к рис.1.9, если подтекающие токи к узлу считать положительными, а вытекающие - отрицательными, то согласно первой формулировке I 1 -I 2 -I 3 -I 4 = 0; согласно второй I 1 =I 2 +I 3 +I 4 . Физически первый закон Кирхгофа означает, что движение электрических зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются. В противном случае изменялись бы потенциалы узлов и токи в ветвях.

Второй закон Кирхгофа также можно сформулироватьдвояко:

1) алгебраическая сумма падений напряженияв любом замкнутом контуре равна алгебраической сумме ЭДС, входящих в данный контур:

, (1.5)

где m - число резистивных элементов; п – число ЭДС в контуре (в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений вдоль любого замкнутого контура

где т - число элементов контура.

Второй закон Кирхгофа является следствием равенства нулю циркуляции вектора напряженности электрического поля вдоль любого замкнутого контура в безвихревом поле.

Законы Кирхгофа справедливы длялинейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

При протекании токов по сопротивлениям в них выделяется теплота. На основании закона сохранения энергии количество теплоты, выделяющееся в единицу времени в сопротивлениях цепи, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I , протекающего через источник ЭДС E , совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени, равную EI , и произведение ЕI входит в уравнение энергетического баланса с положительным знаком. Если же направление тока I встречно ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение ЕI войдет в уравнение энергетического баланса с отрицательным знаком. Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

. (1.7)

В случае питания электрической цепи не только источниками ЭДС, но и источниками тока, при составлении уравнения энергетического баланса необходимо учесть и энергию, доставляемую источниками тока. Предположим, что к узлу а схемы подтекает ток J от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна U а b J. Общий вид уравнения энергетического баланса:

1.4. Эквивалентные преобразования пассивных участков

электрической цепи

При наличии в цепи только одного источника энергии в большинстве случаев цепь можно рассматривать как смешанное соединение источника и приемников энергии, т.е. нескольких резисторов, соединенных между собой параллельно, включенных последовательно с другими сопротивлениями (рис.1.10). Расчет смешанного соединения целесообразно начинать с определения эквивалентной проводимости параллельного соединения, а на основании этой проводимости легко найти обратную величину - эквивалентное сопротивление разветвления R . Для схемы, приведенной на рис. 1.10, а :

После замены разветвления эквивалентным сопротивлением (рис. 1.10, б ) цепь можно рассчитывать как последовательное соединение; ток в неразветвленной части цепи:

а) б )

Рис. 1.10

В ряде случаев расчет сложной схемы, состоящей из линейных сопротивлений, существенно упрощается, если в этой схеме заменить группу сопротивлений другой эквивалентной группой, в которой сопротивления соединены иначе, чем в замещаемой группе. Взаимная эквивалентность двух групп сопротивлений выразится в том, что после замены электрические условия во всей остальной схеме не изменятся.

Рассмотрим преобразование звезды в треугольник и треугольника в звезду. Соединение трех сопротивлений, имеющих вид трехлучевой звезды, называют звездой (рис. 1.11), а соединение трех сопротивлений так, что они образуют собой стороны треугольника, - треугольником (рис.1.12). Обозначим токи, подтекающие к узлам 1 , 2 , 3 , через I 1 , I 2 и I 3 . Выведем формулы преобразования. С этой целью выразим токи I 1 , I 2 и I 3 в звезде и в треугольнике через разности потенциалов точек и соответствующие проводимости.

Рис. 1.11

Для звезды:

, (1.9)

; ; , (1.10)

гдеφ о, φ 1 , φ 2, φ 3 - потенциалы в точках 0 , 1 , 2 , 3 соответственно. Подставим (1.10) в (1.9) и найдем φ 0 :

. (1.11)

Подставим j о в выражение (1.10) для тока I 1:

. (1.12)

С другой стороны, для треугольника в соответствии с обозначениями на рис. 1.12

Современная физика знает много видов энергии, связанных с движением или различным взаимным расположением самых разнообразных материальных тел или частиц, например, всякое движущееся тело обладает кинетической энергией, пропорциональной квадрату его скорости. Эта энергия может изменяться, если скорость тела будет возрастать или убывать. Тело, приподнятое над землей, имеет потенциальную гравитационную энергию, изменяющуюся три изменении высоты тела.

Неподвижные электрические заряды, находящиеся на некотором расстоянии друг от друга, обладают потенциальной электростатической энергией в соответствии с тем, что по закону Кулона заряды либо притягиваются (если они разного знака), либо отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними.

Кинетической и потенциальной энергией обладают и молекулы, и атомы, и частицы, их составляющие - электроны, протоны, нейтроны и т. д. В зависимости от характера движения и природы сил, действующих между этими частицами, изменение энергии в системах таких частиц может проявляться в форме механической работы, в протекании электрического тока, в передаче теплоты, в изменении внутреннего состояния тел, в распространении электромагнитных колебаний и т. п.

Уже более 100 лет назад в физике был установлен фундаментальный закон, в соответствии с которым энергия не может исчезать или возникать из ничего. Она может лишь переходить из одного вида в другой . Этот закон называется законом сохранения энергии .

В трудах А. Эйнштейна этот закон получил существенное развитие. Эйнштейн установил взаимопревращаемость энергии и массы и тем самым расширил толкование закона сохранения энергии, который теперь в общем случае формулируется как закон сохранения энергии и массы .

В соответствии с теорией Эйнштейна всякое изменение энергии тела d Е связано с изменением его массы d m формулой d Е=d mс 2 , где с - скорость света в вакууме, равная 3 х 10 8 м/с.

Из этой формулы, в частности, следует, что если в результате какого-либо процесса масса всех тел, участвующих в процессе, уменьшится на 1 г, то при этом выделится энергия, равная 9х10 13 Дж, что эквивалентно 3000 т условного топлива.

Эти соотношения имеют первостепенное значение при анализе ядерных превращений. В большинстве же макроскопических процессов изменением массы можно пренебречь и говорить лишь о законе сохранения энергии.

Проследим за преобразованиями энергии на каком-нибудь частном примере. Рассмотрим всю цепочку преобразований энергии, необходимую для изготовления какой-либо детали на токарном станке (рис. 1). Пусть исходная энергия 1, количество которой мы примем за 100%, получена за счет полного сжигания некоторого количества природного топлива. Следовательно, для нашего примера 100% исходной энергии содержится в продуктах сгорания топлива, находящихся при высокой (около 2000 К) температуре.

Продукты сгорания в котле электростанции, охлаждаясь, отдают свою внутреннюю энергию в виде теплоты воде и водяному пару. Однако по техническим и экономическим причинам продукты сгорания нельзя охладить до температуры окружающей среды. Они выбрасываются через трубу в атмосферу при температуре около 400 К, унося с собой часть исходной энергии. Поэтому во внутреннюю энергию водяного пара перейдет только 95% исходной энергии.

Полученный водяной пар поступит в паровую турбину, где его внутренняя энергия вначале частично превратится в кинетическую энергию струн пара, которая затем будет отдана в виде механической энергии ротору турбины.

Только часть энергии пара может быть превращена в механическую энергию. Остальная часть отдается охлаждающей воде при конденсации пара в конденсаторе. В нашем примере мы приняли, что энергия, переданная ротору турбины, составит около 38%, что примерно соответствует положению дел на современных электростанциях.

При преобразовании механической энергии в электрическую за счет так называемых джоулевых потерь в обмотках ротора и статора электрогенератора будет потеряно еще около 2% энергии. В результате в электрическую сеть поступит около 36% исходной энергии.

Электродвигатель превратит в механическую энергию вращения токарного станка только часть подведенной к нему электроэнергии. В нашем примере около 9% энергии в виде джоулевой теплоты в обмотках двигателя и теплоты трения в его подшипниках будет отдано в окружающую атмосферу.

Таким образом, к рабочим органам станка окажется подведенным только 27% исходной энергии. Но и на этом злоключения энергии не заканчиваются. Оказывается, что подавляющая часть энергии при механической обработке детали расходуется на трение и в виде теплоты отводится с жидкостью, охлаждающей деталь. Теоретически на то, чтобы из исходной заготовки получить нужную деталь, хватило бы лишь весьма малой доли (в нашем примере условно принято 2%) исходной энергии.


Рис. 1. Схема преобразований энергии при обработке детали на токарном станке: 1 - потеря энергии с уходящими газами, 2 - внутренняя энергия продуктов сгорания, 3 - внутренняя энергия рабочего тела - водяного пара, 4 - теплота, отдаваемая охлаждающей воде в конденсаторе турбины, 5 - механическая энергия ротора турбогенератора, 6 - потери в электрогенераторе, 7 - потерн в электроприводе станка, 8 - механическая энергия вращения станка, 9 - работа трения, превращающаяся в теплоту, отдаваемую жидкости, охлаждающей деталь, 10 - увеличение внутренней энергии детали и стружки после обработки.

Из рассмотренного примера, если его считать достаточно типичным, можно сделать по крайней мере три очень полезных вывода.

Во-первых, на каждой ступеньке преобразования энергии какая-то часть ее теряется . Это утверждение не следует понимать как нарушение закона сохранения энергии. Теряется она для того полезного эффекта, ради которого соответствующее преобразование осуществляется. Полное количество энергии после преобразования остается неизменным.

Если в некоторой машине или аппарате осуществляется процесс преобразования и передачи энергии, то эффективность этого устройства обычно характеризуют коэффициентом полезного действия (к. п. д.) . Схема такого устройства показана на рис. 2.


Рис. 2. Схема для определения к. п. д. устройства, преобразующего энергию.

Пользуясь обозначениями, приведенными на рисунке, к. п. д. можно определить как кпд = Епол/ Епод

Ясно, что при этом на основании закона сохранения энергии должно быть Епод = Епол + Епот

Поэтому к. п. д. можно записать еще и так: кпд = 1 - (Епот/Епол)

Возвращаясь к примеру, изображенному на рис. 1, можно сказать, что к. п. д. котла равен 95%, к. п. д. преобразования внутренней энергии пара в механическую работу - 40%, к. п. д. электрогенератора - 95%, к. п. д. электропривода станка - 75% и к. п. д. собственно процесса обработки детали около 7%.

В прошлом, когда законы превращения энергии еще не были известны, мечтой людей было создание так называемого вечного двигателя - устройства, которое совершало бы полезную работу, не затрачивая никакой энергии. Такой гипотетический двигатель, существование которого нарушало бы закон сохранения энергии, сегодня называют вечным двигателем первого рода в отличие от вечного двигателя второго рода. Сегодня, разумеется, никто не принимает всерьез возможность создания вечного двигателя первого рода.

Во-вторых, все потери энергии в конечном итоге превращаются в теплоту, которая отдается либо атмосферному воздуху, либо воде естественных водоемов.

В-третьих, в конечном счете люди полезно используют лишь малую часть той первичной энергии, которая была затрачена для получения соответствующего полезного эффекта.

Это особенно очевидно при рассмотрении затрат энергии на транспорт. В идеализированной механике, не учитывающей сил трения, перемещение грузов в горизонтальной плоскости не требует затрат энергии.

В реальных условиях вся энергия, потребляемая транспортным средством, затрачивается на преодоление сил трения и сил сопротивления воздуха, т. е. в конечном счете вся энергия, потребляемая на транспорте, превращается в теплоту. В этом отношении любопытны следующие цифры, характеризующие работу перемещения 1 т груза на расстояние 1 км различными видами транспорта: самолет - 7,6 кВт-ч/(т-км), автомобиль - 0,51 кВт-ч/(т-км), поезд - 0,12 кВт-ч/(т-км).

Таким образом, один и тот же полезный эффект может быть достигнут при воздушном транспорте за счет в 60 раз больших затрат энергии, чем при железнодорожном. Конечно, большая затрата энергии дает существенную экономию во времени, но даже и при одинаковой скорости (автомобиль и поезд) затраты энергии различаются в 4 раза.

Этот пример говорит о том, что люди часто поступаются энергетической экономичностью ради достижения иных целей, например комфорта, скорости и т. п. Как правило, сама по себе энергетическая экономичность того или иного процесса нас мало интересует - важны суммарные технико-экономические оценки эффективности процессов. Но по мере удорожания первичных источников энергии энергетическая составляющая в технико-экономических оценках становится все более важной.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама