THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16-20 000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с v < 16 Гц (ннфразвуковые) и v > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются.

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига.

Интенсивностыо звука (или силой звука) называется величина, определяемая сред ней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица интенсивности звука в СИ - ватт на метр в квадрате (Вт/м 2).

Чувствительность человеческого уха различна для разных частот. Для того чтобы, вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая (порот слышимости) и наибольшая (порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие. На рис. 223 представлены зависимости порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости.

Если интенсивность звука является величиной, объективно характеризующей вол новой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Согласно физиологическому закону Вебера - Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:

где I 0 - интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10 -12 Вт/м 2 . Величина Lназывается уровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими, - децибелами (дБ).

Физиологической характеристикой звука является уровень громкости, который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует «90 фон, а шепот на расстоянии 1 м - » 20 фон.


Реальный звук является наложением гармонических колебаний с большим набором частот, т. е. звук обладает акустическим спектром, который может быть сплошным (в некотором интервале присутствуют колебания всех частот) и линейчатым (присутствуют колебания отделенных друг от друга определенных частот).

Звук характеризуется помимо громкости еще высотой и тембром. Высота звука - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т. е. звук становится «выше». Характер акустического спектра и распределения энергии между определенными частотами определяет своеобразие звукового ощущения, называемое тембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустический спектр, т. е. их голоса имеют различный тембр.

Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).

Совершая колебания, тело вызывает колебания прилегающих к нему частиц среды с такой же частотой. Состояние колебательного движения последовательно передается к все более удаленным от тела частицам среды, т. е. в среде распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей от плотности и упругих свойств среды. Скорость распространения звуковых волн в газах вычисляется по формуле

(158.1)

где R- молярная газовая постоянная, М- молярная масса, g = C p /C v - отношение молярных теплоемкостсй газа при постоянных давлении и объеме, Т- термодинамическая температура. Из формулы (158.1) вытекает, что скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при T = 273 К скорость звука в воздухе (M = 29×10 -3 кг/моль) v = 331 м/с, в водороде (M = 2×10 -3 кг/моль) v = 1260 м/с. Выражение (158.1) соответствует опытным данным.

При распространении звука в атмосфере необходимо учитывать целый ряд факторов: скорость и направление ветра, влажность воздуха, молекулярную структуру газовой среды, явления преломления и отражения звука на границе двух сред. Кроме того, любая реальная среда обладает вязкостью, поэтому наблюдается затухание звука, т. е. уменьшение его амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание звука обусловлено в значительной мере его поглощением в среде, связанным с необратимым переходом звуковой энергии в другие формы энергии (в основном в тепловую).

Для акустики помещений большое значение имеет реверберации звука - процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Если помещения пустые, то происходит медленное затухание звука и создается «гулкость» помещения. Если звуки затухают быстро (при применении звукопоглощающих материалов), то они воспринимаются приглушенными. Время реверберации - это время, в течение которого интенсивность звука в помещении ослабляется в миллионами, а его уровень - на 60 дБ. Помещение обладает хорошей акустикой, если время реверберации составляет 0,5-1,5 с.

Специфическое ощущение, воспринимаемое нами как звук, является результатом воздействия на слуховой аппарат человека колебательного движения упругой среды - чаще всего воздуха. Колебания среды возбуждаются источником звука и, распространяясь в среде, доходят до приемного аппарата - нашего уха. Таким образом, бесконечное разнообразие слышимых нами звуков вызывается колебательными процессами, различающимися друг от друга частотой и амплитудой. Не следует смешивать две стороны одного и того же явления: звук как физический процесс представляет собой частный случай колебательного движения; в качестве же психо-физиологического явления звук есть некоторое специфическое ощущение, мехайизм возникновения которого изучен в настоящее время довольно подробно.

Говоря о физической стороне явления, мы характеризуем звук его интенсивностью (силой), его составом и частотой связанных с ним колебательных процессов; имея же в виду звуковые ощущения, мы говорим о громкости, о тембре, о высоте звука.

В твердых телах звук может распространяться как в виде продольных, так и в виде поперечных колебаний. Поскольку жидкости и газы не имеют упругости сдвига, очевидно, что в газообразной и в жидкой средах звук может распространяться только в виде продольных колебаний. В газах и в жидкостях звуковые волны представляют собой чередующиеся сгущения и разрежения среды, удаляющиеся от источника звука с определенной характерной для каждой среды скоростью. Поверхностью звуковой волны является геометрическое место частиц среды, имеющих одинаковую фазу колебаний. Поверхности звуковых волн можно провести, например, так, чтобы между поверхностями соседних волн заключались слой сгущения и слой разрежения. Направление, перпендикулярное к поверхности волны, называют лучом.

Звуковые волны в газообразной среде могут быть сфотографированы. Для этой цели за источником звука помещают

фотографическую пластинку, на которую спереди направляют пучок света от электрической искры так, чтобы эти лучи от мгновенной вспышки света падали на фотопластинку, пройдя через воздух, окружающий источник звука. На рис. 158-160 приведены полученные по указанному способу фотографии звуковых волн. Источник звука был отделен от фотопластинки небольшим экранчиком на подставке.

На рис. 158, а видно, что звуковая волна только что вышла из-за экрана; на рис. 158, б та же волна заснята вторично спустя несколько тысячных долей секунды. Поверхностью волны в данном случае является сфера. На фотографии изображение волны получается в виде окружности, радиус которой со временем увеличивается.

Рис. 158. Фотография звуковой волны в два момента времени (а и б). Отражение звуковой волны (в).

На рис. 158, в приведена фотография звуковой сферической волны, отраженной от плоской стенки. Здесь следует обратить внимание на то, что отраженная часть волны как бы исходит из точки, находящейся за отражающей поверхностью на таком же расстоянии от отражающей поверхности, как и источник звука. Общеизвестно, что явлением отражения звуковых волн объясняется эхо.

На рис. 159 показано изменение волновой поверхности при прохождении звуковой волны через линзообразный мешочек, наполненный водородом. Это изменение поверхности звуковой волны является следствием преломления (рефракции) звуковых лучей: у поверхности раздела двух сред, где скорость волн различна, направление распространения волны изменяется.

Рис. 160 воспроизводит фотографию звуковых волн, на пути распространения которых поставлен экран с четырьмя щелями. Проходя через щели, волны огибают экран. Это явление огибания волнами встреченных препятствий называют дифракцией.

Законы распространения, отражения, преломления и дифракции звуковых волн могут быть выведены из принципа Гюйгенса, согласно которому каждая приведенная в колебание частица

среды может рассматриваться как новый центр (источник) волн; интерференция всех этих волн дает наблюдаемую в действительности волну (способы применения принципа Гюйгенса будут пояснены в третьем томе на примере световых волн).

Звуковые волны несут с собой некоторое количество движения и вследствие этого оказывают давление на встречаемые ими препятствия.

Рис. 159. Преломление звуковой волны.

Рис. 160. Дифракция звуковых волн.

Для пояснения этого факта обратимся к рис. 161. На этом рисунке пунктиром изображена синусоида смещений частиц среды в некоторый момент времени при распространении в среде продольных волн. Скорости этих частиц в рассматриваемый момент времени изобразятся косинусоидой, или, что то же, синусоидой, опережающей синусоиду смещений на четверть периода (на рис. 161 - сплошная линия). Нетрудно сообразить, что сгущения среды будут наблюдаться там, где в данный момент смещение частиц равно нулю или близко к нулю и где скорость направлена в сторону распространения волн. Наоборот, разрежения среды будут наблюдаться там, где смещение частиц тоже равно нулю или близко к нулю, но где скорость частиц направлена в сторону, противоположную распространению волн. Итак, в сгущениях частицы движутся вперед, в разрежениях - назад. Но в

Рис. 161. В сгущениях проходящей звуковой волны частицы движутся вперед,

сгущенных слоях находится большее число частиц, чем в разрежениях. Таким образом, в любой момент времени в бегущих продольных звуковых волнах число частиц, движущихся вперед, несколько превышает число частиц, движущихся назад. Вследствие этого звуковая волна несет с собой некоторое количество движения, что и проявляется в давлении, которое звуковые волны оказывают на встречаемые ими препятствия.

Экспериментально давление звука было исследовано Рэлеем и Петром Николаевичем Лебедевым.

Теоретически скорость звука определяется формулой Лапласа [§ 65, формула (5)]:

где К - модуль всесторонней упругости (когда сжатие производится без притока и отдачи тепла), плотность.

Если сжатие тела производить, поддерживая температуру тела постоянной, то для модуля упругости получаются величины меньшие, чем в том случае, когда сжатие производится без притока и отдачи тепла. Эти два значения модуля всесторонней упругости, как доказывается в термодинамике, относятся так, как теплоемкость тела при постоянном давлении к теплоемкости тела при постоянном объеме.

Для газов (не слишком сжатых) изотермический модуль всесторонней упругости равен просто давлению газа Если, не изменяя температуры газа, мы сожмем газ (увеличим его плотность) в раз, то и давление газа возрастет в раз. Следовательно, по формуле Лапласа получается, что скорость звука в газе не зависит от плотности газа.

Из газовых законов и формулы Лапласа можно вывести (§ 134), что скорость звука в газах пропорциональна корню квадратному из абсолютной температуры газа:

где ускорение силы тяжести, отношение темплоемкостей универсальная газовая постоянная.

При С скорость звука в сухом воздухе равна при средних температурах и средней влажности скорость звука В воздухе считают равной Скорость звука в водороде при равен

В воде скорость звука составляет в стекле в железе

Следует заметить, что ударные звуковые волны, вызываемые выстрелом или взрывом, в начале своего пути имеют скорость,

значительно превосходящую нормальную скорость звука в данной среде. Ударная звуковая волна в воздухе, вызванная сильным взрывом, может иметь вблизи источника звука скорость, в несколько раз превосходящую нормальную скорость звука в воздухе, но уже на расстоянии десятков метров от места взрыва скорость распространения волны уменьшается до нормальной величины.

Как уже упоминалось в § 65, звуковые волны разной длины имеют практически одинаковую скорость. Исключение составляют те области частот, для которых характерно особенно быстрое затухание упругих волн при их распространении в рассматриваемой среде. Обычно эти частоты лежат далеко за пределами слышимости (для газов при атмосферном давлении - это частоты порядка колебаний в секунду). Теоретический анализ показывает, что дисперсия и поглощение звуковых волн связаны с тем, что для перераспределения энергии между поступательным и колебательным движениями молекул требуется некоторое, хотя и малое, время. Это приводит к тому, что длинные волны (волны звукового диапазона) движутся несколько медленнее, чем очень короткие «неслышимые» волны. Так, в парах углекислоты при и атмосферном давлении звук имеет скорость тогда как весьма короткие, «неслышимые», волны распространяются со скоростью

Звуковая волна, распространяясь в среде, может иметь различную форму, зависящую от размеров и формы источника звука. В случаях, технически наиболее интересных, источник звука (излучатель) представляет собой некоторую колеблющуюся поверхность, - таковы, например, мембрана телефона или диффузор громкоговорителя. Если такой источник звука излучает звуковые волны в открытое пространство, то форма волны существенным образом зависит от относительных размеров излучателя; излучатель, размеры которого велики сравнительно с длиной звуковой волны, излучает звуковую энергию в одном только направлении, именно в направлении своего колебательного движения. Напротив, излучатель малого сравнительно с длиной волны размера излучает звуковую энергию по всем направлениям. Форма волнового фронта в том и другом случаях будет, очевидно, различной.

Рассмотрим сначала первый случай. Представим себе жесткую плоскую поверхность достаточно большого (сравнительно с длиной волны) размера, совершающую колебательное движений в направлении своей нормали. Двигаясь вперед, такая поверхность создает перед собой сгущение, которое благодаря упругости среды будет распространяться в направлении смещения излучателя). Двигаясь обратно, излучатель создает за собой разрежение, которое будет перемещаться в среде вслед за начальным сгущением. Недлительном колебании излучателя мы будем наблюдать по обе стороны от него звуковую волну, характеризующуюся тем, что все частицы среды, находящиеся на равном расстоянии от излучающей поверхности средней плотности среды и скорости звука с:

Произведение средней плотности среды на скорость звука, называют акустическим сопротивлением среды.

Акустические сопротивления при 20° С

(см. скан)

Рассмотрим теперь случай сферических волн. Когда размеры излучающей поверхности становятся малыми сравнительно с длиной волны, волновой фронт заметно искривляется. Это происходит потому, что энергия колебаний распространяется по всем направлениям от излучателя.

Явление можно лучше всего понять на следующем простом примере. Представим себе, что на поверхность воды упало длинное бревно. Возникшие благодаря этому волны идут параллельными рядами в обе стороны от бревна. Иначе обстоит дело в том случае, когда в воду брошен небольшой камень, - при этом волны распространяются концентрическими кругами. Бревно велико сравнительно

с длиной волны на поверхности воды; идущие от него параллельные ряды волн представляют собой наглядную модель плоских волн. Камень же имеет небольшие размеры; расходящиеся от места его падения круги дают нам модель сферических волн. При распространении сферической волны поверхность волнового фронта возрастает пропорционально квадрату его радиуса. При постоянной мощности источника звука энергия, протекающая через каждый квадратный сантиметр сферической поверхности радиуса обратно пропорциональна Так как энергия колебаний пропорциональна квадрату амплитуды, то ясно, что амплитуда колебаний в сферической волне должна убывать как величина, обратная первой степени расстояния от источника звука. Уравнение сферической волны имеет, следовательно, такой вид:


Происходящий в газообразных, жидких и твердых средах, который при достижении органов слуха человека воспринимается им как звук. Частота этих волн лежит в пределах от 20 до 20 000 колебаний в секунду. Приведем формулы для звуковой волны и рассмотрим подробнее ее свойства.

Почему появляется звуковая волна?

Многие люди задаются вопросом, что такое звуковая волна. Природа звука заключается в возникновении возмущения в упругой среде. Например, когда в некотором объеме воздуха происходит возмущение давления в виде сжатия, то данная область стремится распространиться в пространстве. Этот процесс приводит к сжатию воздуха в соседних от источника областях, которые также стремятся расшириться. Данный процесс охватывает все большую и большую часть пространства до тех пор, пока не достигнет какого-либо приемника, например, уха человека.

Общая характеристика звуковых волн

Рассмотрим вопросы, что такое звуковая волна и как она воспринимается человеческим ухом. Звуковая волна является продольной, она при попадании в раковину уха вызывает колебания ушной перепонки с определенной частотой и амплитудой. Также можно представлять эти колебания как периодические изменения давления в микрообъеме воздуха, прилегающего к перепонке. Сначала оно увеличивается относительно нормального атмосферного давления, а затем уменьшается, подчиняясь математическим законам гармонического движения. Амплитуда изменений сжатия воздуха, то есть разница максимального или минимального прессинга, создаваемого звуковой волной, с атмосферным давлением пропорционально амплитуде самой звуковой волны.

Многие физические эксперименты показали, что максимальные давления, которые может воспринимать человеческое ухо без нанесения ему вреда, составляют 2800 мкН/см 2 . Для сравнения скажем, что атмосферное давление вблизи поверхности земли равно 10 млн мкН/см 2 . Учитывая пропорциональность давления и амплитуды колебаний, можно сказать, что последняя величина даже для самых сильных волн является незначительной. Если говорить о длине звуковой волны, то для частоты в 1000 колебаний в секунду она будет составлять тысячную долю сантиметра.

Самые слабые звуки создают колебания давления порядка 0,001мкН/см 2 , соответствующая амплитуда колебаний волны для частоты 1000 Гц составляет 10 -9 см, при этом средний диаметр молекул воздуха составляет 10 -8 см, то есть ухо человека является чрезвычайно чувствительным органом.

Понятие интенсивности звуковых волн

С геометрической точки зрения звуковая волна представляет собой колебания определенной формы, с физической же - главным свойством звуковых волн является их способность переносить энергию. Самым важным примером переноса энергии волной является солнце, излученные электромагнитные волны которого обеспечивают энергией всю нашу планету.

Интенсивность звуковой волны в физике определяется как количество энергии, переносимой волной через единицу поверхности, которая перпендикулярна распространению волны, и за единицу времени. Говоря более коротко, интенсивность волны - это ее мощность, переносимая через единицу площади.

Силу звуковых волн принято измерять в децибелах, которые основываются на логарифмической шкале, удобной для практического анализа результатов.

Интенсивность различных звуков

Следующая шкала в децибелах дает представление о значении различной и ощущениях, которые она вызывает:

  • порог неприятных и некомфортных ощущений начинается со 120 децибел (дБ);
  • клепальный молоток создает шум в 95 дБ;
  • скоростной поезд - 90 дБ;
  • улица с интенсивным автомобильным движением - 70 дБ;
  • громкость обычного разговора между людьми - 65 дБ;
  • современный автомобиль, движущийся с умеренными скоростями, создает шум в 50 дБ;
  • средняя громкость радиоприемника - 40 дБ;
  • тихий разговор - 20 дБ;
  • шум листвы деревьев - 10 дБ;
  • минимальный порог звуковой чувствительности человека близок к 0 дБ.

Чувствительность человеческого уха зависит от частоты звука и составляет максимальное значение для звуковых волн с частотой 2000-3000 Гц. Для звука, находящегося в этом интервале частот, нижний порог чувствительности человека составляет 10 -5 дБ. Более высокие и более низкие частоты, чем указанный интервал, приводят к увеличению нижнего порога чувствительности таким образом, что близкие к 20 Гц и к 20 000 Гц частоты человек слышит только при их интенсивности в несколько десятков дБ.

Что касается верхнего порога интенсивности, после которого звук начинает вызывать неудобства для человека и даже болевые ощущения, то следует сказать, что он практически не зависит от частоты и лежит в пределах 110-130 дБ.

Геометрические характеристики звуковой волны

Реальная звуковая волна представляет собой сложный колебательный пакет продольных волн, который можно разложить на простые гармонические колебания. Каждое такое колебание описывается с геометрической точки зрения следующими характеристиками:

  1. Амплитуда - максимальное отклонение каждого участка волны от равновесия. Для этой величины принято обозначение A.
  2. Период. Это время, за которое простая волна совершает свое полное колебание. Через это время каждая точка волны начинает повторять свой колебательный процесс. Период принято обозначать буквой T и измерять в секундах в системе СИ.
  3. Частота. Это физическая величина, которая показывает, сколько колебаний данная волна совершает за секунду. То есть по своему смыслу она является величиной, обратной к периоду. Обозначается она f. Для частоты звуковой волны формула ее определения через период выглядит следующим образом: f = 1/T.
  4. Длина волны - это расстояние, которое она пробегает за один период колебаний. Геометрически длина волны представляет собой расстояние между двумя ближайшими максимумами или двумя ближайшими минимумами на синусоидальной кривой. Длина колебаний звуковой волны - это расстояние между ближайшими областями сжатия воздуха или ближайшими местами его разрежения в пространстве, где движется волна. Обозначается она обычно греческой буквой λ.
  5. Скорость распространения звуковой волны - это расстояние, на которое распространяется область сжатия или область разряжения волны за единицу времени. Обозначается эта величина буквой v. Для скорости звуковой волны формула имеет вид: v = λ*f.

Геометрия чистой звуковой волны, то есть волны постоянной чистоты, подчиняется синусоидальному закону. В общем случае формула звуковой волны имеет вид: y = A*sin(ωt), где y - значение координаты данной точки волны, t - время, ω = 2*pi*f - циклическая частота колебаний.

Апериодический звук

Многие источники звука можно считать периодическими, например, звук от таких музыкальных инструментов, как гитара, пианино, флейта, но также существует большое количество звуков в природе, которые являются апериодическими, то есть звуковые колебания изменяют свою частоту и форму в пространстве. Технически такой вид звука называется шумом. Яркими примерами апериодического звука является городской шум, шум моря, звуки от ударных инструментов, например, от барабана и другие.

Среда распространения звуковых волн

В отличие от электромагнитного излучения, фотоны которого для своего распространения не нуждаются в какой-либо вещественной среде, природа звука такова, что для его распространения нужна определенная среда, то есть, согласно законам физики, звуковые волны не могут распространяться в вакууме.

Звук может распространяться в газах, в жидкостях и в твердых телах. Основными характеристиками распространяющейся в среде звуковой волны являются следующие:

  • волна распространяется линейно;
  • она распространяется одинаково по всем направлениям в гомогенной среде, то есть от источника звук расходится, образуя идеальную сферическую поверхность.
  • независимо от амплитуды и частоты звука, его волны распространяются с одинаковой скоростью в данной среде.

Скорость звуковых волн в различных средах

Скорость распространения звука зависит от двух основных факторов: от среды, в которой движется волна, и от температуры. В общем случае действует следующее правило: чем более плотной является среда, и чем выше ее температура, тем быстрее в ней движется звук.

Например, скорость распространения в воздухе звуковой волны вблизи поверхности земли при температуре 20 ℃ и влажности 50% составляет 1235 км/ч или 343 м/с. В воде же при данной температуре звук движется быстрее в 4,5 раза, то есть около 5735 км/ч или 1600 м/с. Что касается зависимости скорости звука от температуры в воздухе, то она увеличивается на 0,6 м/с с увеличением температуры на каждый градус Цельсия.

Тембр и тон

Если позволить струне или металлической пластине вибрировать свободно, то она будет производить звуки различной частоты. Очень редко можно встретить тело, которое бы издавало звук одной конкретной частоты, обычно звук какого-либо объекта обладает набором частот в некотором интервале.

Тембр звука определяется количеством гармоник, присутствующих в нем, и их соответствующими интенсивностями. Тембр является субъективной величиной, то есть это восприятие звучащего объекта конкретным человеком. Тембр обычно характеризуют следующими прилагательными: высокий, блестящий, звучный, мелодичный и так далее.

Тон является звуковым ощущением, которое позволяет его классифицировать как высокий или низкий. Данная величина является также субъективной и не может быть измерена каким-либо инструментом. Тон связан с объективной величиной - частотой звуковой волны, но между ними не существует однозначной связи. Например, для одночастотного звука постоянной интенсивности тон растет при увеличении частоты. Если же частота звука остается постоянной, а увеличивается его интенсивность, то тон становится более низким.

Форма источников звука

В соответствии с формой тела, которое совершает механические колебания и тем самым порождает волн бывают трех основных типов:

  1. Точечный источник. Он создает звуковые волны сферической формы, которые быстро убывают при удалении от источника (приблизительно на 6 дБ, если расстояние от источника увеличивается вдвое).
  2. Линейный источник. Он создает волны цилиндрической формы, интенсивность которых убывает медленнее, чем от точечного источника (при каждом увеличении расстояния вдвое относительно источника интенсивность уменьшается на 3 дБ).
  3. Плоский или двумерный источник. Он порождает волны только в определенном направлении. Примером такого источника может быть поршень, двигающийся в цилиндре.

Электронные источники звука

Для создания звуковой волны электронные источники используют специальную мембрану (динамик), которая совершает механические колебания за счет явления электромагнитной индукции. К таким источникам можно отнести следующие:

  • проигрыватели различных дисков (CD, DVD и другие);
  • кассетные магнитофоны;
  • радиоприемники;
  • телевизоры и некоторые другие.

Звук - это механические колебания, которые распространяются в упругой материальной среде преимущественно в виде продольных волн.

B вакууме звук не распространяется, так как для передачи звука необходима материальная среда и механический контакт между собой частиц материальной среды.

В среде звук распространяется в виде звуковых волн. Звуковые волны представляют собой механические колебания, которые передаются в среде при помощи её условных частиц. Под условными частицами среды понимают её микрообъёмы.

Основные физические характеристики акустической волны:

1. Частота.

Частота звуковой волны - это величина, равная числу полных колебаний в единицу времени. Обозначается символом v (ню) и измеряется в герцах. 1 Гц =1 кол/сек = [ с -1 ].

Шкала звуковых колебаний делится на следующие частотные интервалы:

· инфразвук (от 0 до 16 Гц);

· слышимый звук (от 16 до 16 000 Гц);

· ультразвук (свыше 16 000 Гц).

С частотой звуковой волны тесно связана обратная величина – период звуковой волны. Период звуковой волны - это время одного полного колебания частиц среды. Обозначается Т и измеряется в секундах [ с ].

По направлению колебаний частиц среды, переносящих звуковую волну, звуковые волны делятся на:

· продольные;

· поперечные.

У продольных волн направления колебаний частиц среды совпадает с направ­лением распространения в среде звуковой волны (Рис. 1).

У поперечных волн направления колебаний частиц среды перпендикулярны направлению распространения звуковой волны (Рис. 2).


Рис. 1 Рис. 2

Продольные волны распространяются в газах, жидкостях и твердых телах. Поперечные - только в твердых телах.

3. Форма колебаний.

По форме колебаний звуковые волны делятся на:

· простые волны;

· сложные волны.

Графиком простой волны является синусоида.

Графиком сложной волны является любая периодическая несинусоидальная кривая.

4. Длина волны.

Длина волны - величина, равная расстоянию, на которое распространяется звуковая волна за время, равное одному периоду. Обозначается λ (лямбда) и измеряется в метрах (м), сантиметрах (см), миллиметрах (мм), микрометрах (мкм).

Длина волны зависит от среды, в которой распространяется звук.

5. Скорость звуковой волны.

Скорость звуковой волны - это скорость распространения звука в среде при неподвижном источнике звука. Обозначается символом v, вычисляется по формуле:

Скорость звуковой волны зависит от вида среды и температуры. Наибольшая скорость звука в твёрдых упругих телах, меньше - в жидкостях, и самая малая - в газах.

воздух, нормальное атмосферное давление, температура - 20 градусов, v = 342 м/с;

вода, температура 15-20 градусов, v = 1500 м/с;

металлы, v = 5000-10000 м/с.

Скорость звука в воздухе с увеличением температуры на 10 градусов возрастает примерно на 0,6 м/с.

ЛЕКЦИЯ 3 АКУСТИКА. ЗВУК

1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц -ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама