THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

1. Все живые организмы на Земле состоят из клеток, сходных по строению, химическому составу и функционированию. Это говорит о родстве (общем происхождении) всех живых организмов на Земле (о единстве органического мира).


2. Клетка является:

  • структурной единицей (организмы состоят из клеток)
  • функциональной единицей (функции организма выполняются за счет работы клеток)
  • генетической единицей (клетка содержит наследственную информацию)
  • единицей роста (организм растет за счет размножения его клеток)
  • единицей размножения (размножение происходит за счет половых клеток)
  • единицей жизнедеятельности (в клетке происходят процессы пластического и энергетического обмена) и т.п.

3. Все новые дочерние клетки образуются из уже существующих материнских клеток путем деления.


4. Рост и развитие многоклеточного организма происходит за счет роста и размножения (путем митоза) одной или нескольких исходных клеток.

Мужики

Гук открыл клетки.


Левенгук открыл живые клетки (сперматозоиды, эритроциты, инфузории, бактерии).


Броун открыл ядро.


Шлейден и Шванн вывели первую клеточную теорию («Все живые организмы на Земле состоят из клеток, сходных по строению»).

Методы

1. Световой микроскоп увеличивает до 2000 раз (обычный школьный - от 100 до 500 раз). Видно ядро, хлоропласты, вакуоль. Можно изучать процессы, происходящие в живой клетке (митоз, движение органоидов и т.п.).


2. Электронный микроскоп увеличивает до 10 7 раз, что позволяет изучать микроструктуру органоидов. Метод не работает с живыми объектами.


3. Ультрацентрифуга. Клетки разрушаются и помещаются в центрифугу. Компоненты клетки разделаются по плотности (самые тяжелые части собираются на дне пробирки, самые легкие - на поверхности). Метод позволяет избирательно выделять и изучать органоиды.

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Укажите формулировку одного из положений клеточной теории
1) Оболочка грибной клетки состоит из углеводов
2) В клетках животных отсутствует клеточная стенка
3) Клетки всех организмов содержат ядро
4) Клетки организмов сходны по химическому составу
5) Новые клетки образуются путем деления исходной материнской клетки

Ответ


Выберите три варианта. Какие положения содержит клеточная теория?
1) Новые клетки образуются в результате деления материнской клетки
2) В половых клетках содержится гаплоидный набор хромосом
3) Клетки сходны по химическому составу
4) Клетка – единица развития всех организмов
5) Клетки тканей всех растений и животных одинаковы по строению
6) Все клетки содержат молекулы ДНК

Ответ



1) биогенной миграции атомов
2) родстве организмов

4) появлении жизни на Земле около 4,5 млрд. лет назад

6) взаимосвязи живой и неживой природы

Ответ


Выберите один, наиболее правильный вариант. Какой метод позволяет избирательно выделять и изучать органоиды клетки
1) окрашивание
2) центрифугирование
3) микроскопия
4) химический анализ

Ответ


Выберите один, наиболее правильный вариант. В связи с тем, что в любой клетке происходит питание, дыхание, образование продуктов жизнедеятельности, ее считают единицей
1) роста и развития
2) функциональной
3) генетической
4) строения организма

Ответ


Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о
1) влиянии среды на приспособленность
2) родстве организмов
3) происхождении растений и животных от общего предка
4) развитии организмов от простого к сложному
5) сходном строении клеток всех организмов
6) возможности самозарождения жизни из неживой материи

Ответ


Выберите три варианта. Сходное строение клеток растений и животных - доказательство
1) их родства
2) общности происхождения организмов всех царств
3) происхождения растений от животных
4) усложнения организмов в процессе эволюции
5) единства органического мира
6) многообразия организмов

Ответ


Выберите один, наиболее правильный вариант. Клетку считают единицей роста и развития организмов, так как
1) она имеет сложное строение
2) организм состоит из тканей
3) число клеток увеличивается в организме путем митоза
4) в половом размножении участвуют гаметы

Ответ


Выберите один, наиболее правильный вариант. Клетка – единица роста и развития организма, так как
1) в ней имеется ядро
2) в ней хранится наследственная информация
3) она способна к делению
4) из клеток состоят ткани

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. С помощью световой микроскопии в растительной клетке можно различить:
1) эндоплазматическую сеть
2) микротрубочки
3) вакуоль
4) клеточную стенку
5) рибосомы

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световой микроскоп можно увидеть
1) деление клетки
2) репликацию ДНК
3) транскрипцию
4) фотолиз воды
5) хлоропласты

Ответ


3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. При изучении растительной клетки под световым микроскопом можно увидеть
1) клеточную мембрану и аппарат Гольджи
2) оболочку и цитоплазму
3) ядро и хлоропласты
4) рибосомы и митохондрии
5) эндоплазматическую сеть и лизосомы

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В разработку клеточной теории свой вклад внесли:
1) Опарин
2) Вернадский
3) Шлейден и Шванн
4) Мендель
5) Вирхов

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Метод центрифугирования позволяет
1) определить качественный и количественный состав веществ в клетке
2) определить пространственную конфигурацию и некоторые физические свойства макромолекул
3) очиститить макромолекулы, выведенные из клетки
4) получить объемное изображение клетки
5) разделить органоиды клетки

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Каково преимущество использования электронной микроскопии перед световой?
1) большее разрешение
2) возможность наблюдать живые объекты
3) дороговизна метода
4) сложность приготовления препарата
5) возможность изучать макромолекулярные структуры

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие органоиды были обнаружены в клетке с помощью электронного микроскопа?
1) рибосомы
2) ядра
3) хлоропласты
4) микротрубочки
5) вакуоли

Ответ


Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. Основные положения клеточной теории позволяют сделать вывод о
1) биогенной миграции атомов
2) родстве организмов
3) происхождении растений и животных от общего предка
4) появлении жизни на Земле около 4,5 млрд. лет назад
5) сходном строении клеток всех организмов

Ответ


1. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. В цитологии используют методы
1) гибридологический
2) генеалогический
3) центрифугирования
4) микроскопирования
5) мониторинга

Ответ

© Д.В.Поздняков, 2009-2019

Открытие и изучение клетки стало возможным благодаря изобретению микроскопа и усовершенствованию методов микроскопических исследований.

Англичанин Роберт Гук первым в 1665 г.с помощью увеличительных линз наблюдал деление тканей коры пробкового дуба на ячейки (клетки). Хотя выснилось, что открыл он не клетки (в собственном понятии термина), а лишь внешние оболочки растительных клеток. Позже мир одноклеточных организмов был открыт А. Левенгуком. Он первый увидел животные клетки (эритроциты). Позже клетки животных описал Ф. Фонтана,но эти исследования в то время не привели к понятию универсальности клеточного строения, потому что не было чётких представлений о том, что же такое клетка.

Р. Гук считал, что клетки – это пустоты или поры между волокнами растений. Позже М. Мальпиги, Н. Грю и Ф. Фонтана, наблюдая растительные объекты под микроскопом, подтвердили данные Р. Гука, назвав клетки «пузырьками». Значительный вклад в развитие микроскопических исследований растительных и животных организмов сделал А. Левенгук. Данные своих наблюдений он опубликовал в книге «Тайны природы».

Иллюстрации к этой книге чётко демонстрируют клеточные структуры растительных и животных организмов. Однако А.Левенгук не представлял описанные морфологические структуры как клеточные образования. Его исследования имели случайный, не систематизированный характер. Г.Линк, Г. Травенариус и К. Рудольф в начале $XIX$ столетия своими исследованиями показали, что клетки – это не пустоты, а самостоятельные ограниченные стенками образования. Было установлено, что клетки имеют содержимое, которое Я Пуркинье назвал протоплазмой. Р. Броун описал ядро, как постоянную часть клеток.

Т. Шванн проанализировал данные литературы о клеточном строении растений и животных, сопоставив их с собственными исследованиями и опубликовал результаты в своей работе. В ней Т. Шванн показал, что клетки являются элементарными живыми структурными единицами растительных и животных организмов. Они имеют общий план строения и образуются единым путём. Эти тезисы и стали основой клеточной теории.

Исследователи длительное время занимались накоплением наблюдений за строением одноклеточных и многоклеточных организмов, прежде, чем сформулировать положения КТ. Именно в этот период были более развиты и усовершенствования различные оптические методы исследования.

Клетки делят на ядерные (эукариотические) и безъядерные (прокариотические). Животные организмы построены из эукариотических клеток. Лишь красные клетки крови млекопитающих (эритроциты) не имеют ядер. Они теряют их в процессе своего развития.

Определение клетки изменялось в зависимости от познания их строения и функции.

Определение 1

По современным данным, клетка – это ограниченная активной оболочкой, структурно упорядоченная система биополимеров, которые образуют ядро и цитоплазму, участвуют в единой совокупности процессов метаболизма и обеспечивают поддержание и воспроизведение системы в целом.

Клеточная теория является обобщённым представлением о строении клетки как единицы живого, о размножении клеток и их роли в формировании многоклеточных организмов.

Прогресс в изучении клетки связан с развитием микроскопии в $XIX$ веке. В то время представление о строении клетки изменилось: за основу клетки принималась не клеточная оболочка, а её содержимое – протоплазма. Тогда же открыли ядро как постоянный элемент клетки.

Сведения о тонком строении и развитии тканей и клеток давали возможность сделать обобщение. Такое обобщение сделал в 1839 г. немецкий биолог Т. Шванн в виде сформулированной им клеточной теории. Он утверждал, что клетки и животных, и растений принципиально похожи. Развил и обобщил эти представления немецкий патолог Р. Вирхов. Он выдвинул важное положение, которое состояло в том, что клетки возникают только из клеток путём размножения.

Основные положения клеточной теории

Т. Шванн в 1839 г. в своей работе «Микроскопические исследования о соответствии в строении и произрастании животных и растений» сформулировал основные положения клеточной теории (позже они не раз уточнялись и дополнялись.

Клеточная теория содержит такие положения:

  • клетка – основная элементарная единица строения, развития и функционирования всех живых организмов, мельчайшая единица живого;
  • клетки всех организмов гомологичны (подобные) (гомологичны)по своему химическому строению, основным проявлениям жизненных процессов и обмену веществ;
  • размножаются клетки путём деления - новая клетка образуется в результате деления изначальной (материнской) клетки;
  • у сложных многоклеточных организмов клетки специализируются по функциям, которые они выполняют, и образуют ткани; из тканей построены органы, тесно взаимосвязанные межклеточными, гуморальными и нервными формами регуляции.

Интенсивное развитие цитологии в $XIX$ и $XX$ столетиях подтвердило основные положения КТ и обогатило её новыми данными о строении и функциях клетки. В этот период было отброшено отдельные неправильные тезисы клеточной теории Т. Шванна, а именно, что отдельная клетка многоклеточного организма может функционировать самостоятельно, что многоклеточный организм является простой совокупностью клеток, а развитие клетки происходит из неклеточной «бластемы».

В современном виде клеточная теория включает такие основные положения:

  1. Клетка – это наименьшая единица живого, которой присущи все свойства, которые отвечают определению «живого». Это обмен веществ и энергии, движение, рост, раздражительность, адаптация, изменчивость, репродукция, старение и смерть.
  2. Клетки различных организмов имеют общий план строения, который обусловлен подобностью общих функций, направленных на поддержание жизни собственно клеток и их размножение. Разнообразие форм клеток является результатом специфичности выполняемых ими функцуий.
  3. Размножаются клетки в результате деления исходной клетки с предыдущим воспроизведением её генетического материала.
  4. Клетки являются частями целостного организма, их развитие, особенности строения и функции зависят от всего организма, что является последствием взаимодействия в функциональных системах тканей, органов, аппаратов и систем органов.

Замечание 1

Клеточная теория, которая соответствует современному уровню знаний в биологии, по многим положениям кардинально отличается от представлений о клетке не только начала ХІХ века, когда Т. Шванн сформулировал её впервые, но даже средины ХХ века. В наше время это – система научных взглядов, которая приобрела вид теорий, законов и принципов.

Основные положения КТ сохранили своё значение и до сегодняшнего дня, хотя более чем за 150 лет было получено новые сведения о структуре, жизнедеятельности и развитии клеток.

Значение клеточной теории

Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка является важнейшей составляющей частью всех организмов, их главным «строительным» компонентом. Так как развитие каждого организма начинается с одной клетки (зиготы), то клетка является и эмбриональной основой многоклеточных организмов.

Создание клеточной теории стало, одним из решающих доказательств единства всей живой природы, важнейшим событием биологической науки.

Клеточная теория способствовала развитию эмбриологии, гистологии и физиологии. Она дала основу для материалистического понятия жизни, для объяснения эволюционной взаимосвязи организмов, для понятия сущности онтогенеза.

Основные положения КТ актуальны и сегодня, хотя за период более чем 100 лет естествоиспытатели получили новые сведения о строении, развитии и жизнедеятельности клетки.

Клетка является основой всех процессов в организме: и биохимических, и физиологических, поскольку именно на клеточном уровне происходят все эти процессы. Благодаря клеточной теории возможным стало прийти к заключению о подобности в химическом составе всех клеток и ещё раз убедиться в единстве всего органического мира.

Клеточная теория – одно и важнейших биологических обобщений, согласно которому все организмы имеют клеточное строение.

Замечание 2

Клеточная теория совместно с законом превращения энергии и эволюционной теорией Ч. Дарвина является одним из трёх величайших открытий естествознания $XIX$ века.

Клеточная теория кардинально повлияла на развитие биологии. Она доказала единство живой природы и показала структурную единицу этого единства, которой является клетка.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория имела значительное и решающее влияние на развитие биологии, служила главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основание для объяснения родственных взаимосвязей организмов, для понятия механизма индивидуального развития.

Клеточная теория, возможно, является важнейшим обобщением современной биологии и представляет собой систему принципов и положений. Она является научной подоплекой для многих биологических дисциплин, которые изучают вопросы строения и жизнедеятельности живых существ. Клеточная теория раскрывает механизмы роста, развития и размножения организмов.

Впервые клетки, а точнее клеточные стенки (оболочки) мертвых клеток, были обнаружены в срезах пробки с помощью микроскопа, английским ученым Робертом Гуком в 1665 году. Именно он и предложил термин «клетка».
Позднее голландец А. Ван Левенгук открыл множество одноклеточных организмов в каплях воды, а в крови людей красные кровяные клетки (эритроциты).

То, что помимо клеточной оболочки все живые клетки имеют внутреннее содержимое полужидкое студенистое вещество, ученые смогли открыть только только в начале XIX века. Это полужидкое студенистое вещество назвали протоплазмой. В 1831 году было открыто клеточное ядро, и все живое содержимое клетки — протоплазму стали подразделять на ядро и цитоплазму.

Позднее по мере совершенствования техники микроскопии в цитоплазме были обнаружены многочисленные органоиды (слово «органоид» имеет греческие корни и означает «похожий на орган»), и цитоплазму стали подразделять на органоиды и жидкую часть — гиалоплазму.

Известные немецкие ученые ботаник Матиас Шлейден и зоолог Теодор Шванн, активно работавшие с клетками растений и животных, пришли к выводу, что все клетки имеют похожее строение и состоят из ядра, органоидов и гиалоплазмы. Позднее в 1838-1839 г. они сформулировали основные положения клеточной теории . Согласно этой теории клетка является основной структурной единицей всех живых организмов, как растительных, так и животных, а процесс роста организмов и тканей обеспечивается процессом образования новых клеток.

Через 20 лет немецким анатомом Рудольфом Вирховым было сделано еще одно важное обобщение: новая клетка может возникнуть только из предшествующей клетки. Когда выяснелось, что сперматозоид и яйцеклетка — тоже клетки, соединяющиеся друг с другом в процессе оплодотворения, стало понятно, что жизнь из поколения в поколение — это непрерывная последовательность клеток. По мере развития биологии и открытия процессов деления клеток (митоза и мейоза) клеточная теория дополнялась все новыми положениями. В современном виде основные положения клеточной теории можно сформулировать так:

1. Клетка — основная структурно-функциональная и генетическая единица всех живых организмов и наименьшая единица живого.

Этот постулат был полностью доказан современной цитологией. Кроме того, клетка представляет собой открытую для обмена с внешней средой, саморегулирующуюся и самовоспроизводящуюся систему.

В настоящее время ученые научились выделять различные компоненты клетки (вплоть до отдельных молекул). Многие из этих компонентов могут даже функционировать самостоятельно, если создать им соответствующие условия. Так, например, сокращения актино-миозинового комплекса может быть вызвано добавлением в пробирку АТФ. Искусственный синтез белов и нуклеиновых кислот тоже стало реальностью в наше время, но все это лишь только части живого. Для полноценной работы всех этих комплексов, входящих в состав клетки, нужны еще дополнительные вещества, ферменты, энергия и т.д. И только клетки являются самостоятельными и саморегулирующимися системами, т.к. имеют все необходимое для поддержания полноценной жизнедеятельности.

2. Строение клеток, их химический состав и основные проявления процессов жизнедеятельности сходны у всех живых организмов (одноклеточных и многоклеточных).

В природе существует два типа клеток: прокариотические и эукариотические. Несмотря на их некоторые различия это правило для них справедливо.
Общий принцип организации клеток определяется необходимостью осуществить ряд обязательных функций, направленных на поддержание жизнедеятельности самих клеток. Например, у всех клеток есть оболочка, которая с одной стороны изолируюет ее содержимое от окружающей среды, с другой — контролирует поток веществ в клетку и из нее.

Органоиды или органеллы — постоянные специализированные структуры в клетках живых организмов. Органоиды разных организмов имеют общий план строения и работают по единым механизмам. Каждый органоид отвечает за определенные функции, которые жизненно необходимы для клетки. Благодаря органоидам в клетках происходит энергетический обмен, биосинтез белка, появляется способность к воспроизводству. Органоиды стали сопоставлять с органами многоклеточного организма, отсюда и появился этот термин.

У многоклеточных организмов хорошо прослеживается значительное разнообразие клеток, которое связано с их функциональной специализацией. Если сравнить, например, мышечные и эпительные клетки, можно заметить, что они отличаются друг от друга преимущественным развитием разных видов органоидов. Клетки приобретают черты функциональной специализации, которые необходимы для выполнения конкретных функций, в результате клеточной дифференцировки в процессе онтогенеза.

3. Любая новая клетка может образоваться только в результате деления материнской клетки.

Размножение клеток (т.е. увеличение их количества) будь то прокариоты или эукариоты может происходить только делением уже существующих клеток. Делению обязательно предшествует процесс предварительного удвоения генетического материала (репликация ДНК). Началом жизни организма является оплодотворенная яйцеклетка (зигота), т.е. клетка образующаяся в результате слияния яйцеклетки и сперматозоида. Все остальное разнообразие клеток в организме — результат бесчисленного числа ее делений. Таким образом, можно сказать, что все клетки в организме родственны, развиваются одинаковым образом из одного источника.

4. Многоклеточные организмы — живые организмы, состоящие из множества клеток. Большая часть этих клеток дифференцирована, т.е. различаются по своему строению, выполняемым функциям и образуют различные ткани.

Многоклеточные организмы — это целостные системы специализированных клеток, регулируемыми межклеточными, нервными и гуморальными механизмами. Следует различать многоклеточность и колониальность. У колониальных организмов нет дифференцированных клеток, а следовательно, нет разделения тела на ткани. В многоклеточные организмы помимо клеток входят еще неклеточные элементы, например, межклеточное вещество соединительной ткани, костный матрикс, плазма крови.

В итоге можно сказать, что вся жизнедеятельность организмов от их рождения до смерти: наследственность, рост, обмен веществ, болезни, старение и т.п. — все это многообразные аспекты деятельности различных клеток организма.

Клеточная теория оказала огромное влияние на развитие не только биологии, но и естествознания в целом, так как она установила морфологическую основу единства всех живых организмов, дала общебиологическое объяснение жизненных явлений. По своему значению, клеточная теория не уступает таким выдающимся достижениям науки, как закон превращения энергии или эволюционная теория Ч. Дарвина. Итак, клетка — основа организации представителей царств растений, грибов и животных — возникла и развивалась в процессе биологической эволюции.

Научная теория представляет собой обобщение научных данных об объекте исследования. Это в полной мере касается клеточной теории , созданной немецкими исследователями М. Шлейденом и Т. Шванном в 1839 г.

В основу клеточной теории легли работы многих исследователей, искавших элементарную структурную единицу живого. Созданию и развитию клеточной теории способствовало возникновение в XVI в. и дальнейшее развитие микроскопии.

Основные события – предшественники создания клеточной теории:
– 1590 г. – создание первого микроскопа (братья Янсен);
– 1665 г. Роберт Гук – первое описание микроскопической структуры пробки ветки бузины (на самом деле это были клеточные стенки, но Гук ввел название «клетка»);
– 1695 г. – публикация А. Левенгука о микроскопических организмах, увиденных им в микроскоп;
– 1833 г. – Р. Броун описал ядро растительной клетки;
– 1839 г. –М. Шлейден и Т. Шванн открыли ядрышко.

Основные положения современной клеточной теории:

1. Все простые и сложные организмы состоят из клеток, способных к обмену с окружающей средой веществами, энергией, биологической информацией.
2. Клетка – элементарная структурная, функциональная и генетическая единица живого.
3. Клетка – элементарная единица размножения и развития живого.
4. В многоклеточных организмах клетки дифференцированы по строению и функциям. Они объединены в ткани, органы и системы органов.
5. Клетка представляет собой элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению.

Клеточная теория развивалась благодаря новым открытиям . В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие в митозе. С 1903 г. стала развиваться генетика. Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур. XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика. Без создания клеточной теории это развитие было бы невозможным.

В 1858 г. Р.Вирхов внес уточнение в КТ : все клетки возникают только из клеток путем их деления.

Итак, КТ утверждает, что все живые организмы состоят из клеток. Клетка – это та минимальная структура живого, которая обладает всеми жизненными свойствами – способностью к обмену веществ, росту, развитию, передаче генетической информации, саморегуляции и самообновлению. Клетки всех организмов обладают сходными чертами строения. Однако клетки отличаются друг от друга по своим размерам, форме и функциям :

  • яйцо страуса и икринка лягушки состоят из одной клетки;
  • мышечные клетки обладают сократимостью;
  • нервные клетки проводят нервные импульсы.

Различия в строении клеток во многом зависят от функций, которые они выполняют в организмах. Чем сложнее устроен организм, тем более разнообразны по своему строению и функциям его клетки. Каждый вид клеток имеет определенные размеры и форму. Сходство в строении клеток различных организмов, общность их основных свойств подтверждают общность их происхождения и позволяют сделать вывод о единстве органического мира.

· 1 Общие сведения

· 2 Положения клеточной теории Шлейдена-Шванна

· 3 Основные положения современной клеточной теории

· 4 Дополнительные положения клеточной теории

· 5 История

o 5.1 XVII век

o 5.2 XVIII век

o 5.3 XIX век

§ 5.3.1 Школа Пуркинье

§ 5.3.2 Школа Мюллера и работа Шванна

o 5.4 Развитие клеточной теории во второй половине XIX века

o 5.6 Современная клеточная теория

Общие сведения[править | править вики-текст]

Клеточная теория - основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию , основываясь на множестве исследований оклетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерииимеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна[править | править вики-текст]

Создатели теории так сформулировали её основные положения:

1. Все животные и растения состоят из клеток.

2. Растут и развиваются растения и животные путём возникновения новых клеток.

3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории[править | править вики-текст]

1. Клетка - это элементарная, функциональная единица строения всего живого. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.(Кроме вирусов, которые не имеют клеточного строения)

2. Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.

3. Клетки всех организмов гомологичны.

4. Клетка происходит только путём деления материнской клетки.

Дополнительные положения клеточной теории[править | править вики-текст]

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.


1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.

2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - кмитохондриям, хлоропластам, генам и хромосомам.

3. Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История[править | править вики-текст]

XVII век[править | править вики-текст]

1665 год - английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы - итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов - описал бактерий и протистов (инфузорий).

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.

XVIII век[править | править вики-текст]

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

XIX век[править | править вики-текст]

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Ф. Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье[править | править вики-текст]

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

· во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;

· во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна[править | править вики-текст]

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Теодор Шванн сформулировал принципы клеточной теории.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

· В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.

· Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.

· В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века[править | править вики-текст]

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

· Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.

· Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.

· Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век[править | править вики-текст]

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория[править | править вики-текст]

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

· Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.

· Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.

· Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.

· Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.

· Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, то есть образуется оно в результате метаболизма клеток.

· Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама