THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Обычно второй замечательный предел записывают в такой форме:

\begin{equation} \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e\end{equation}

Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $e\approx{2{,}718281828459045}$. Если сделать замену $t=\frac{1}{x}$, то формулу (1) можно переписать в следующем виде:

\begin{equation} \lim_{t\to{0}}\biggl(1+t\biggr)^{\frac{1}{t}}=e\end{equation}

Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное - выполнение двух условий:

  1. Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
  2. Показатель степени (т.е. $x$ в формуле (1) или $\frac{1}{t}$ в формуле (2)) должен стремиться к бесконечности.

Говорят, что второй замечательный предел раскрывает неопределенность $1^\infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+\infty$ или $-\infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.

Отмечу, что есть также несколько полезных следствий из второго замечательного предела . Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.

Пример №1

Вычислить предел $\lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7}$.

Сразу отметим, что основание степени (т.е. $\frac{3x+1}{3x-5}$) стремится к единице:

$$ \lim_{x\to\infty}\frac{3x+1}{3x-5}=\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{3+\frac{1}{x}}{3-\frac{5}{x}} =\frac{3+0}{3-0} =1. $$

При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $\lim_{x\to\infty}(4x+7)=\infty$.

Основание степени стремится к единице, показатель степени - к бесконечности, т.е. мы имеем дело с неопределенностью $1^\infty$. Применим формулу для раскрытия этой неопределённости. В основании степени формулы расположено выражение $1+\frac{1}{x}$, а в рассматриваемом нами примере основание степени таково: $\frac{3x+1}{3x-5}$. Посему первым действием станет формальная подгонка выражения $\frac{3x+1}{3x-5}$ под вид $1+\frac{1}{x}$. Для начала прибавим и вычтем единицу:

$$ \lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{3x+1}{3x-5}-1\right)^{4x+7} $$

Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что

$$ \frac{3x+1}{3x-5}-1 =\frac{3x+1}{3x-5}-\frac{3x-5}{3x-5} =\frac{3x+1-3x+5}{3x-5} =\frac{6}{3x-5}. $$

Так как $\frac{3x+1}{3x-5}-1=\frac{6}{3x-5}$, то:

$$ \lim_{x\to\infty}\left(1+ \frac{3x+1}{3x-5}-1\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} $$

Продолжим «подгонку». В выражении $1+\frac{1}{x}$ формулы в числителе дроби находится 1, а в нашем выражении $1+\frac{6}{3x-5}$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:

$$ 1+\frac{6}{3x-5} =1+\frac{1}{\frac{3x-5}{6}} $$

Таким образом,

$$ \lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} $$

Итак, основание степени, т.е. $1+\frac{1}{\frac{3x-5}{6}}$, подогнано под вид $1+\frac{1}{x}$, который требуется в формуле . Теперь начнём работать с показателем степени. Заметьте, что в формуле выражения, стоящие в показатели степени и в знаменателе, одинаковы:

Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $\frac{3x-5}{6}$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $\frac{6}{3x-5}$. Итак, имеем:

$$ \lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}\cdot\frac{6}{3x-5}\cdot(4x+7)} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}}\right)^{\frac{6\cdot(4x+7)}{3x-5}} $$

Отдельно рассмотрим предел дроби $\frac{6\cdot(4x+7)}{3x-5}$, расположенной в степени:

$$ \lim_{x\to\infty}\frac{6\cdot(4x+7)}{3x-5} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{6\cdot\left(4+\frac{7}{x}\right)}{3-\frac{5}{x}} =6\cdot\frac{4}{3} =8. $$

Ответ : $\lim_{x\to{0}}\biggl(\cos{2x}\biggr)^{\frac{1}{\sin^2{3x}}}=e^{-\frac{2}{9}}$.

Пример №4

Найти предел $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)$.

Так как при $x>0$ имеем $\ln(x+1)-\ln{x}=\ln\left(\frac{x+1}{x}\right)$, то:

$$ \lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) $$

Раскладывая дробь $\frac{x+1}{x}$ на сумму дробей $\frac{x+1}{x}=1+\frac{1}{x}$ получим:

$$ \lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(1+\frac{1}{x}\right)\right) =\lim_{x\to+\infty}\left(\ln\left(\frac{x+1}{x}\right)^x\right) =\ln{e} =1. $$

Ответ : $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)=1$.

Пример №5

Найти предел $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}$.

Так как $\lim_{x\to{2}}(3x-5)=6-5=1$ и $\lim_{x\to{2}}\frac{2x}{x^2-4}=\infty$, то мы имеем дело с неопределенностью вида $1^\infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:

$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=x-2;\;x=t+2\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{2t+4}{t^2+4t}}=\\ =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{1}{3t}\cdot 3t\cdot\frac{2t+4}{t^2+4t}} =\lim_{t\to{0}}\left(\biggl(1+3t\biggr)^{\frac{1}{3t}}\right)^{\frac{6\cdot(t+2)}{t+4}} =e^3. $$

Можно решить данный пример и по-иному, используя замену: $t=\frac{1}{x-2}$. Разумеется, ответ будет тем же:

$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=\frac{1}{x-2};\;x=\frac{2t+1}{t}\\&t\to\infty\end{aligned}\right| =\lim_{t\to\infty}\left(1+\frac{3}{t}\right)^{t\cdot\frac{4t+2}{4t+1}}=\\ =\lim_{t\to\infty}\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}\cdot\frac{3}{t}\cdot\frac{t\cdot(4t+2)}{4t+1}} =\lim_{t\to\infty}\left(\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}}\right)^{\frac{6\cdot(2t+1)}{4t+1}} =e^3. $$

Ответ : $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}=e^3$.

Пример №6

Найти предел $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} $.

Выясним, к чему стремится выражение $\frac{2x^2+3}{2x^2-4}$ при условии $x\to\infty$:

$$ \lim_{x\to\infty}\frac{2x^2+3}{2x^2-4} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{2+\frac{3}{x^2}}{2-\frac{4}{x^2}} =\frac{2+0}{2-0}=1. $$

Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^\infty$, которую раскроем с помощью второго замечательного предела:

$$ \lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{2x^2+3}{2x^2-4}-1\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{7}{2x^2-4}\right)^{3x} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}\cdot\frac{7}{2x^2-4}\cdot 3x} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}}\right)^{\frac{21x}{2x^2-4}} =e^0 =1. $$

Ответ : $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x}=1$.

Первый замечательный предел.

Вывод первого замечательного предела представляет интерес с точки зрения приложения теории пределов, и поэтому мы предлагаем Вам его практически целиком.

Рассмотрим поведение функции
при
. Для этого рассмотрим окружность радиуса 1; обозначим центральный угол МОВ черезх , при этом
.

Тогда явно площадь DМОА < площадь сектора МОА < площадьDСОА (см. рис. 1).

S D МОА =

S МОА =
=
S D C ОА =

Вернувшись к упомянутому неравенству и удвоив его, получим:

sin x < x < tg x .

После почленного деления наsinx :
или

Поскольку
, то переменнаязаключена между двумя величинами, имеющими один и тот же предел, т.е. , на основании теоремы о пределе промежуточной функции предыдущего пункта имеем:

-первый замечательный предел .

Пример. Вычислите пределы функций, используя первый замечательный предел:




Ответ. 1) 1, 2) 0, 3)

Задание: Вычислите предел функции, используя первый замечательный предел:

Ответ:-2.

Второй замечательный предел.

Для вывода второго замечательного предела введем определение числа е :

Определение. Предел переменной величины
при
называется числом
е :

- Второй замечательный предел

Число е – иррациональное число. Его значение с десятью верными знаками после запятой обычно округляют до одного верного знака после запятой:

e = 2,7182818284…»2,7.

Теорема. Функция
при
х , стремящемся к бесконечности, стремится к пределу е :

Пример. Вычислите пределы функций:


Решение.

    Согласно свойствам пределов, предел степени равен степени предела, т. е.:


Кроме того, аналогичным образом можно доказать, что


Ответ. 1)е 3 , 2) е 2 , 3)е 4 .

Задание. Вычислите предел функции, используя второй замечательный предел:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ответ: е -5

Непрерывность функции Непрерывность функции в точке

Определение. Функция f ( x ), x Î ( a ; b ) x о Î ( a ; b ), если предел функции f ( x ) в точке х о существует и равен значению функции в этой точке:

.

Согласно данному определению, непрерывность функции f (x ) в точкех о означает выполнимость следующих условий:

    функция f (x ) должна быть определена в точкех о ;

    у функции f (x ) должен существовать предел в точкех о ;

    предел функции f (x ) в точкех о должен совпадать со значением функции в этой точке.

Пример.

Функция f (x ) = x 2 определена на всей числовой прямой и непрерывна в точкех = 1 посколькуf (1) = 1 и

Непрерывность функции на множестве

Определение. Функция f(x), называется непрерывной на интервале (a; b), если она непрерывна в каждой точке этого интервала.

Если функция непрерывна в некоторой точке, то эта точка называется точкой непрерывности данной функции. В тех случаях, когда предел функции в данной точке не существует или его значение не совпадает со значением функции в данной точке, то функция называется разрывной в этой точке, а сама точка – точкой разрыва функции f(x).

Свойства непрерывных функций.

1) Сумма конечного числа функций, непрерывных в точке а,

2) Произведение конечного числа функций, непрерывных в точке а, есть функция, непрерывная в этой точке.

3) Отношение конечного числа функций, непрерывных в точке а, есть функция, непрерывная в этой точке, если значение функции, стоящей в знаменателе, отлично от нуля в точкеа.

Пример.

    Функция f (x ) = x п , гдеn Î N , непрерывна на всей числовой прямой. Доказать этот факт можно, используя свойство 2 и непрерывность функцииf (x ) = x .

    Функция f (x ) = с x п (с – константа) непрерывна на всей числовой прямой, исходя из свойства 2 и примера 1.

Теорема 1. Многочлен есть функция, непрерывная на всей числовой прямой.

Теорема 2 . Любая дробно-рациональная функция непрерывна в каждой точке своей области определения .

Пример.


Определение Функция f ( x ) называется непрерывной в точке х = а , если в этой точке ее приращение
стремится к нулю, когда приращение аргумента
стремится к нулю, или иначе: функция
f (х) называется непрерывной в точке х = а , если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т. е. если

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

Собраны формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью первого замечательного предела. Даны подробные решения примеров с использованием первого замечательного предела его следствий.

Содержание

См. также: Доказательство первого замечательного предела и его следствий

Применяемые формулы, свойства и теоремы

Здесь мы рассмотрим примеры решений задач на вычисление пределов, в которых используется первый замечательный предел и его следствия.

Ниже перечислены формулы, свойства и теоремы, которые наиболее часто применяются в подобного рода вычислениях.

  • Первый замечательный предел и его следствия:
    .
  • Тригонометрические формулы для синуса, косинуса , тангенса и котангенса :
    ;
    ;
    ;
    при , ;
    ;
    ;
    ;
    ;
    ;
    .

Примеры решений

Пример 1

Для этого.
1. Вычисляем предел .
Поскольку функция непрерывна для всех x , и в том числе в точке , то
.
2. Поскольку функция не определена (и, следовательно, не является непрерывной) при , то нам нужно убедиться, что существует такая проколотая окрестность точки , на которой . В нашем случае при . Поэтому это условие выполнено.
3. Вычисляем предел . В нашем случае он равен первому замечательному пределу:
.

Таким образом,
.
Аналогичным образом, находим предел функции в знаменателе:
;
при ;
.

И наконец, применяем арифметические свойства предела функции :
.

Применим .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 2

Найдите предел:
.

Решение с помощью первого замечательного предела

При , , . Это неопределенность вида 0/0 .

Преобразуем функцию за знаком предела:
.

Сделаем замену переменной . Поскольку и при , то
.
Аналогичным образом имеем:
.
Поскольку функция косинус непрерывна на всей числовой оси, то
.
Применяем арифметические свойства пределов:

.

Решение с помощью эквивалентных функций

Применим теорему о замене функций эквивалентными в пределе частного .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 3

Найти предел:
.

Подставим в числитель и знаменатель дроби:
;
.
Это неопределенность вида 0/0 .

Попробуем решить этот пример с помощью первого замечательного предела. Поскольку в нем значение переменной стремится к нулю, то сделаем подстановку, чтобы новая переменная стремилась не к , а к нулю. Для этого от x перейдем к новой переменной t , сделав подстановку , . Тогда при , .

Предварительно преобразуем функцию за знаком предела, умножив числитель и знаменатель дроби на :
.
Подставим и воспользуемся приведенными выше тригонометрическими формулами.
;


;

.

Функция непрерывна при . Находим ее предел:
.

Преобразуем вторую дробь и применим первый замечательный предел:
.
В числителе дроби мы сделали подстановку .

Применяем свойство предела произведения функций:

.

.

Пример 4

Найти предел:
.

При , , . У нас неопределенность вида 0/0 .

Преобразуем функцию под знаком предела. Применим формулу:
.
Подставим :
.
Преобразуем знаменатель:
.
Тогда
.

Поскольку и при , то сделаем подстановку , и применим теорему о пределе сложной функции и первый замечательный предел:
.

Применяем арифметические свойства предела функции:
.

Пример 5

Найдите предел функции:
.

Нетрудно убедиться, что в этом примере мы имеем неопределенность вида 0/0 . Для ее раскрытия, применим результат предыдущей задачи, согласно которому
.

Введем обозначение:
(П5.1) . Тогда
(П5.2) .
Из (П5.1) имеем:
.
Подставим в исходную функцию:

,
где ,
,
;
;
;
.

Используем (П5.2) и непрерывность функции косинус. Применяем арифметические свойства предела функции.
,
здесь m - отличное от нуля число, ;
;


;
.

Пример 6

Найти предел:
.

При , числитель и знаменатель дроби стремятся к 0 . Это неопределенность вида 0/0 . Для ее раскрытия, преобразуем числитель дроби:
.

Применим формулу:
.
Подставим :
;
,
где .

Применим формулу:
.
Подставим :
;
,
где .

Числитель дроби:

.
Функция за знаком предела примет вид:
.

Найдем предел последнего множителя, учитывая его непрерывность при :



.

Применим тригонометрическую формулу:
.
Подставим ,
. Тогда
.

Разделим числитель и знаменатель на , применим первый замечательный предел и одно из его следствий:

.

Окончательно имеем:
.

Примечание 1. Также можно было применить формулу
.
Тогда .

См. также:

Формула второго замечательного предела имеет вид lim x → ∞ 1 + 1 x x = e . Другая форма записи выглядит так: lim x → 0 (1 + x) 1 x = e .

Когда мы говорим о втором замечательном пределе, то нам приходится иметь дело с неопределенностью вида 1 ∞ , т.е. единицей в бесконечной степени.

Рассмотрим задачи, в которых нам пригодится умение вычислять второй замечательный предел.

Пример 1

Найдите предел lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 .

Решение

Подставим нужную формулу и выполним вычисления.

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 - 2 ∞ 2 + 1 ∞ 2 + 1 4 = 1 - 0 ∞ = 1 ∞

У нас в ответе получилась единица в степени бесконечность. Чтобы определиться с методом решения, используем таблицу неопределенностей. Выберем второй замечательный предел и произведем замену переменных.

t = - x 2 + 1 2 ⇔ x 2 + 1 4 = - t 2

Если x → ∞ , тогда t → - ∞ .

Посмотрим, что у нас получилось после замены:

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 ∞ = lim x → ∞ 1 + 1 t - 1 2 t = lim t → ∞ 1 + 1 t t - 1 2 = e - 1 2

Ответ: lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = e - 1 2 .

Пример 2

Вычислите предел lim x → ∞ x - 1 x + 1 x .

Решение

Подставим бесконечность и получим следующее.

lim x → ∞ x - 1 x + 1 x = lim x → ∞ 1 - 1 x 1 + 1 x x = 1 - 0 1 + 0 ∞ = 1 ∞

В ответе у нас опять получилось то же самое, что и в предыдущей задаче, следовательно, мы можем опять воспользоваться вторым замечательным пределом. Далее нам нужно выделить в основании степенной функции целую часть:

x - 1 x + 1 = x + 1 - 2 x + 1 = x + 1 x + 1 - 2 x + 1 = 1 - 2 x + 1

После этого предел приобретает следующий вид:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x

Заменяем переменные. Допустим, что t = - x + 1 2 ⇒ 2 t = - x - 1 ⇒ x = - 2 t - 1 ; если x → ∞ , то t → ∞ .

После этого записываем, что у нас получилось в исходном пределе:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x = lim x → ∞ 1 + 1 t - 2 t - 1 = = lim x → ∞ 1 + 1 t - 2 t · 1 + 1 t - 1 = lim x → ∞ 1 + 1 t - 2 t · lim x → ∞ 1 + 1 t - 1 = = lim x → ∞ 1 + 1 t t - 2 · 1 + 1 ∞ = e - 2 · (1 + 0) - 1 = e - 2

Чтобы выполнить данное преобразование, мы использовали основные свойства пределов и степеней.

Ответ: lim x → ∞ x - 1 x + 1 x = e - 2 .

Пример 3

Вычислите предел lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 .

Решение

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + 1 x 3 1 + 2 x - 1 x 3 3 2 x - 5 x 4 = = 1 + 0 1 + 0 - 0 3 0 - 0 = 1 ∞

После этого нам нужно выполнить преобразование функции для применения второго замечательного предела. У нас получилось следующее:

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = 1 ∞ = lim x → ∞ x 3 - 2 x 2 - 1 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

Поскольку сейчас у нас есть одинаковые показатели степени в числителе и знаменателе дроби (равные шести), то предел дроби на бесконечности будет равен отношению данных коэффициентов при старших степенях.

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 6 2 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3

При замене t = x 2 + 2 x 2 - 1 - 2 x 2 + 2 у нас получится второй замечательный предел. Значит, что:

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3 = lim x → ∞ 1 + 1 t t - 3 = e - 3

Ответ: lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = e - 3 .

Выводы

Неопределенность 1 ∞ , т.е. единица в бесконечной степени, является степенной неопределенностью, следовательно, ее можно раскрыть, используя правила нахождения пределов показательно степенных функций.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама