THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Натуральные числа – числа, которые применяют для счета предметов. Любое натуральное число можно записать с помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую записьчисел называют десятичной.

Последовательность всех натуральных чисел называют натуральным рядом.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

Самое маленькое натуральное число – единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего. Натуральный ряд бесконечен, наибольшего числа в нем нет.

Значение цифры зависит от ее места в записи числа. Например, цифра 4 означает: 4 единицы,если она стоит на последнем месте в записи числа (в разряде единиц); 4 десятка, если она стоит на предпоследнем месте (в разряде десятков); 4 сотни, если она стоит на третьем месте от конца разряде сотен).

Цифра0 означает отсутствие единиц данного разряда в десятичной записи числа.Она служит и для обозначения числа «нуль ». Это число означает «ни одного». Счет 0: 3 футбольного матча говорит о том, что первая команда не забила ни одного гола в ворота противника.

Нуль не относят к натуральным числам. И действительно счет предметов никогда не начинают с нуля.

Если запись натурального числа состоит из одного знакаодной цифры, то его называют однозначным. Т.е. однозначное натуральное число – натуральное число, запись которого состоит из одного знакаодной цифры. Например, числа 1, 6, 8 – однозначные.

Двузначное натуральное число – натуральное число, запись которого состоит из двух знаков – двух цифр.

Например, числа 12, 47, 24, 99 – двузначные.

Так же по числу знаков в данном числе дают названия и другим числам:

числа 326, 532, 893 – трехзначные;

числа 1126, 4268, 9999 – четырехзначные и т.д.

Двузначные, трехзначные, четырехзначные, пятизначные и т.д. числа называют многозначными числами.

Для чтения многозначных чисел их разбивают, начиная справа, на группы по три цифры в каждой (самая левая группа может состоять из одной или двух цифр). Эти группы называют классами.

Миллион – это тысяча тысяч (1000 тыс.), его записывают 1 млн или 1 000 000.

Миллиард – это 1000 миллионов. Его записывают 1 млрд или 1 000 000 000.

Три первые цифры справа составляют класс единиц, три следующие – класс тысяч, далее идут классы миллионов, миллиардов и т.д. (рис. 1).

Рис. 1. Класс миллионов, класс тысяч и класс единиц (слева направо)

Число15389000286 записано в разрядной сетке (рис. 2).

Рис. 2. Разрядная сетка: число 15 миллиардов 389 миллионов 286

Это число имеет 286 единиц в классе единиц, нуль единиц в классе тысяч, 389 единиц в классе миллионов и15 единиц в классе миллиардов.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

  • Наименьшее натуральное число – единица.
  • У натурального ряда следующее число больше предыдущего на единицу. (1, 2, 3, …) Три точки или троеточие ставятся в том случае, если закончить последовательность чисел невозможно.
  • Натуральный ряд не имеет наибольшего числа, он бесконечен.

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, … В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов.

Вконтакте

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются :

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Внимание! Натуральные числа получаются при счете предметов или при обозначении их количества.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных . На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица , так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем .

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными .

Внимание! Для удобства счета существуют классы и разряды:

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью .

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы .

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при на два имеют остаток. Например, 7:2=3,5, 11:2=5,5, 23:2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50:2=25, 100:2=50, 3456:2=1728.

Важно! Числовой ряд из N не может состоять только из четных или нечетных значений, так как они должны чередоваться: за четным всегда идет нечетное, за ним снова четное и т.д.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С .
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Внимание! Все вышеперечисленные неравенства действительны и в обратном направлении.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников .

Для того, чтобы быстро и правильно умножать и уметь решать обратные задачи, необходимо знать компоненты умножения.

15. 10=150. В данном выражении 15 и 10 являются множителями , а 150 – произведением.

Умножение обладает свойствами, которые необходимы при решении задач, уравнений и неравенств:

  • От перестановки множителей конечное произведение не изменится.
  • Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель (справедливо для всех множителей).

Например: 15. Х=150. Разделим произведение на известный множитель. 150:15=10. Сделаем проверку. 15. 10=150. По такому принципу решаются даже сложные линейные уравнения (если упростить их).

Важно! Произведение может состоять не только из двух множителей. Например: 840=2. 5. 7. 3. 4

Что такое натуральные числа в математике?

Разряды и классы натуральных чисел

Вывод

Подведем итоги. N используются при счете или обозначении количества предметов. Ряд натуральных совокупностей цифр бесконечен, но он включает в себя только целые и положительные суммы разрядов и классов. Умножение тоже необходимо для того, чтобы считать предметы , а также для решения задач, уравнений и различных неравенств.

Навигация по странице:

Определение. Натуральные числа - это числа, которые используются для счета: 1 , 2 , 3 , …, n , …

Множество натуральных чисел принято обозначать символом N (от лат. naturalis - естественный).

Натуральные числа в десятичной системе счисления записываются с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Множество натуральных чисел - является упорядоченным множеством , т.е. для любых натуральных чисел m и n справедливо одно из соотношений:

  • либо m = n (m равно n ),
  • либо m > n (m больше n ),
  • либо m < n (m меньше n ).
  • Наименьшее натурально число - единица (1 )
  • Наибольшего натурального числа не существует .
  • Нуль (0 ) не является натуральным числом.
Множество натуральных чисел бесконечно , так как для любого числа n всегда найдется число m , которое больше n

Из соседних натуральных чисел, число, которое стоит левее числа n называется предыдущим числу n , а число, которое стоит правее называется следующим за n .

Операции над натуральными числами

К замкнутым операциям над натуральными числами (операциям в результате, которых получается натуральных чисел) относятся следующие арифметические операции:

  • Сложение
  • Умножение
  • Возведение в степень a b , где a - основание степени и b - показатель степени. Если основание и показатель - натуральные числа, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как их результат не всегда будет натуральным числом.

  • Вычитание (При этом Уменьшаемое должно быть больше Вычитаемого)
  • Деление

Классы и разряды

Разряд - положение (позиция) цифры в записи числа.

Низший разряд - самый правый. Старший разряд - самый левый.

Пример:

5 - единиц, 0 - десятков, 7 - сотен,
2 - тысячи, 4 - десятков тысяч, 8 - сотен тысяч,
3 - миллиона, 5 - десятков миллионов, 1 - сотня миллионов

Для удобства чтения, натуральных числа разбивают, на группы по три цифры в каждой начиная справа.

Класс - группа из трех цифр, на который разбито число, начиная справа. Последний класс может состоять из трех, двух или одной цифры.

  • Первый класс - класс единиц;
  • Второй класс - класс тысяч;
  • Третий класс - класс миллионов;
  • Четвертый класс - класс миллиардов;
  • Пятый класс - класс триллионов;
  • Шестой класс - класс квадрильонов (квадриллионов);
  • Седьмой класс - класс квинтильонов (квинтиллионов);
  • Восьмой класс - класс секстильонов;
  • Девятый класс - класс септильонов;

Пример:

34 - миллиарда 456 миллионов 196 тысяч 45

Сравнение натуральных чисел

  1. Сравнение натуральных чисел с разным количеством цифр

    Среди натуральных чисел больше то, у которого больше цифр
  2. Сравнение натуральных чисел с равным количеством цифр

    Сравнить числа поразрядно, начиная со старшего разряда. Больше то, у которого больше единиц в наивысшем одноименном разряде

Пример:

3466 > 346 - так как число 3466 состоит из 4 цифр, а число 346 из 3 цифр.

34666 < 245784 - так как число 34666 состоит из 5 цифр, а число 245784 из 6 цифр.

Пример:

346 667 670 52 6 986

346 667 670 56 9 429

Второе из натуральных чисел с равным количеством цифр больше, так как 6 > 2.

Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1. Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно, так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число, следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции - сложение и умножение . Для обозначения этих операций используются соответственно символы " + " и " " (или " × " ).

Сложение натуральных чисел

Каждой паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $s$, называемое суммой. Сумма $s$ состоит из стольких единиц, сколько их содержится в числах $n$ и $m$. О числе $s$ говорят, что оно получено в результате сложения чисел $n$ и $m$, и пишут

Числа $n$ и $m$ называются при этом слагаемыми. Операция сложения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

Подробнее о сложении чисел читайте по ссылке .

Пример

Задание. Найти сумму чисел:

$13+9 \quad$ и $ \quad 27+(3+72)$

Решение. $13+9=22$

Для вычисления второй суммы, для упрощения вычислений, применим к ней вначале свойство ассоциативности сложения:

$$27+(3+72)=(27+3)+72=30+72=102$$

Ответ. $13+9=22 \quad;\quad 27+(3+72)=102$

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе $n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе $r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и $m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке .

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чисел замкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операции вычитания и деления , как операции обратные к операциям сложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа: $n$-й степенью натурального числа $m$ называется натуральное число $k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m^{n}$, в котором число $m$ называется основанием степени , а число $n$ - показателем степени .

Пример

Задание. Найти значение выражения $2^{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама