THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

КВАНТОВАЯ ТЕОРИЯ

КВАНТОВАЯ ТЕОРИЯ

теория, основы который были заложены в 1900 физиком Максом Планком. Согласно этой теории, атомы всегда излучают или принимают лучевую энергию только порциями, прерывно, а именно определенными квантами (кванты энергии), величина энергии которых равна частоте колебаний (скорость света, деленная на длину волны) соответствующего вида излучения, умноженной на планковский действия (см. Константа, Микрофизика , а также Квантовая механика). Квантовая была положена (гл. о. Эйнштейном) в основу квантовой теории света (корпускулярная теория света), по которой свет также состоит из квантов, движущихся со скоростью света (световые кванты, фотоны).

Философский энциклопедический словарь . 2010 .


Смотреть что такое "КВАНТОВАЯ ТЕОРИЯ" в других словарях:

    Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

    КВАНТОВАЯ ТЕОРИЯ, теория, которая в сочетании с теорией ОТНОСИТЕЛЬНОСТИ составила основу развития физики на протяжении всего XX в. Она описывает взаимосвязь между ВЕЩЕСТВОМ и ЭНЕРГИЕЙ на уровне ЭЛЕМЕНТАРНЫХ или субатомных ЧАСТИЦ, а также… … Научно-технический энциклопедический словарь

    квантовая теория - Другой путь исследований изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858 1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию … Западная философия от истоков до наших дней

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля … Большой Энциклопедический словарь

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля. * * * КВАНТОВАЯ ТЕОРИЯ КВАНТОВАЯ ТЕОРИЯ, объединяет квантовую механику (см. КВАНТОВАЯ МЕХАНИКА), квантовую статистику (см. КВАНТОВАЯ СТАТИСТИКА) и квантовую теорию поля… … Энциклопедический словарь

    квантовая теория - kvantinė teorija statusas T sritis fizika atitikmenys: angl. quantum theory vok. Quantentheorie, f rus. квантовая теория, f pranc. théorie des quanta, f; théorie quantique, f … Fizikos terminų žodynas

    Физ. теория, объединяющая квантовую механику, квантовую статистику и квантовую теорию поля. В сё основе лежит представление о дискретной (прерывистой) структуре излучения. Согласно К. т. всякая атомная система может находиться в определённых,… … Естествознание. Энциклопедический словарь

    Квантовая теория поля квантовая теория систем с бесконечным числом степеней свободы (полей физических (См. Поля физические)). К. т. п., возникшая как обобщение квантовой механики (См. Квантовая механика) в связи с проблемой описания… … Большая советская энциклопедия

    - (КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы эл. магн. поле, для полного описания к рого в любой момент времени требуется задание напряжённостей электрич. и магн. полей в каждой точке … Физическая энциклопедия

    КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля................. 3002. Свободные поля и корпускулярно волновой дуализм.................... 3013. Взаимодействие полей.........3024. Теория возмущений............... 3035. Расходимости и… … Физическая энциклопедия

Книги

  • Квантовая теория
  • Квантовая теория , Бом Д.. В книге систематически изложена нерелятивистская квантовая механика. Автор детально разбирает физическое содержание и подробно рассматривает математический аппарат одного из самых важных…
  • Квантовая теория поля Возникновение и развитие Знакомство с одной из самых математизированных и абстрактных физических теорий Выпуск 124 , Григорьев В.. Квантовая теория - наиболее общая и глубокая из физических теорий современности. О том, как менялись физические представления о материи, как возникала квантовая механика, а затем и квантовая…

Основные положения квантовой теории поля: 1). Вакумное состояние. Нерелятивистская квантовая механика позволяет изучать поведение неизменного числа элементарных частиц. Квантовая теория поля учитывает рождение и поглощение или уничтожение элементарных частиц. Поэтому квантовая теория поля содержит два оператора: оператор рождения и оператор уничтожения элементарных частиц. Согласно квантовой теории поля невозможно состояние, когда нет ни поля, ни частиц. Вакуум – это поле, в своем наинизшем энергетическом состоянии. Для вакуума хар-ны не самостоятельные, наблюдаемые частицы, а виртуальные частицы, которые возникают, а через некоторое исчезают. 2.) Виртуальный механизм взаимодействия элементарных частиц. Элементарные частицы взаимодействуют с друг другом по следством полей, но если частица не изменяет своих параметров, она не может испустить или поглотить настоящий квант взаимодействия, такой энергии и импульса и на такое время и расстояние, которое определяются соотношениями ∆E∙∆t≥ħ, ∆рх∙∆х≥ħ(постоянная кванта) соотношение неопределенностей. Природа виртуальных частиц такова, что они возникнут через некоторое время, исчезают или поглощаются. Амер. Физик Фейнман разработал графический способ изображения взаимодействия элементарных частиц с виртуальными квантами:

Испускание и поглощение виртуального кванта свободной частицы

Взаимодействие двух элемен. частиц по средствам одного виртуального кванта.

Взаимодействие двух элемен. частиц по средствам двух виртуального кванта.

На данных рис. Графич. изображение частиц, но не их траекторий.

3.) Спин – является важнейшей хар-кой квантовых объектов. Это собственный момент импульса частицы и если момент импульса волчка совпадает с направление оси вращения, то спин не определяет какого- то определенного выделенного направления. Спин задает направленность, но вероятностным образом. Спин существует в форме, которой нельзя придать наглядный вид. Спин обозначается s=I∙ħ, причем I принимает как целочисленные значения I=0,1,2,…, так и получисленные значения I = ½, 3/2, 5/2,… В классической физике одинаковые частицы пространственно не различны, т.к. занимают одну и туже область пространства, вероятность нахождения частицы какой-либо области пространства определяется квадратом модуля волновой функции. Волновая функция ψ, является характеристикой всех частиц. ‌‌. соответствует симметричности волновых функций, когда частицы 1 и 2 тождественны и их состояния одинаковы. случай антисимметричности волновых функций, когда частицы 1 и 2 тождественны друг другу, но различаются по одному из квантовых параметров. Например: спином. Согласно принципу запрета Пауля, частицы, обладающие полуцелым спином, не могут находиться в одном и том же состоянии. Этот принцип позволяет описать структуру электронных оболочек атомов и молекул. Те частицы, которые обладают целым спином, называются бозонами. I =0 у Пи-мезонов; I =1 у фотонов; I = 2 у гравитонов. Частицы, обладающие получисленным спином, называются фермионами . У электрона, позитрона, нейтрона, протона I = ½. 4) Изотопический спин. Масса нейтрона всего лишь на 0,1% больше массы протона, если абстрагироваться (не учитывать) электрический заряд, то можно считать эти две частицы двумя состояниями одной и той же частицы, нуклона. Аналогично имеются - мезоны, но это не три самостоятельные частицы, а три состояния одной и той же частицы, которые называются просто Пи – мезоном. Для учета сложности или мультиплетности частиц вводится параметр, который называется изотопическим спином. Он определяется из формулы n = 2I+1, где n – число состояний частицы, например для нуклона n=2, I=1/2. Проекцией изоспина обозначаются Iз = -1/2; Iз = ½, т.е. протон и нейтрон образуют изотопический дублет. Для Пи – мезонов число состояний = 3, т. е n=3, I =1, Iз=-1, Iз=0, Iз=1. 5) Классификация частиц: важнейшей хар-кой элементарных частиц является масса покоя, по этому признаку частицы делятся на барионы (пер. тяжелый), мезоны (от греч. Средний), лептоны (от греч. легкий). Барионы и мезоны по принципу взаимодействия относятся еще к классу адронов (от греч. сильный), поскольку эти частицы участвуют в сильном взаимодействии. К барионам относятся: протоны, нейтроны, гипероны из названных частиц стабильным является только протон, все барионы – фермионы, мезоны являются бозонами, являются не стабильными частицами, участвуют во всех типах взаимодействий, так же как и барионы, к лептонам относятся: электрон, нейтрон, эти частицы являются фермионами, не участвуют в сильных взаимодействиях. Особо выделяется фотон, который не относится к лептонам, а также не относится к классу адронам. Его спин = 1, а масса покоя = 0. Иногда в особый класс выделяют кванты взаимодействия, мезон – квант слабого взаимодействия, глюон – квант гравитационного взаимодействия. Иногда в особый класс выделяют кварки, обладающие дробным электрическим зарядом равен 1/3 или 2/3 электрического заряда.6) Типы взаимодействия. В 1865 году была создана теория электромагнитного поля (Максвелла). В 1915 году была создана теория гравитационного поля Эйнштейном. Открытия сильных и слабых взаимодействий относится к первой трети 20 века. Нуклоны крепко связаны в ядре между собой сильными взаимодействиями, которые названы сильными. В 1934 году Ферме создал первую достаточно адекватную экспериментальным исследованием теорию слабых взаимодействий. Эта теория возникла после открытия радиоактивности, пришлось предположить, что в ядрах атома возникают незначительные взаимодействия, которые приводят к самопроизвольному распаду тяжелых химических элементов как уран, при этом излучаются - лучи. Ярким примером слабых взаимодействий являются проникновение частиц нейтронов сквозь землю в то время, как у нейтронов проникающая способность намного скромнее, они задерживаются свинцовым листом, толщиной нескольких сантиметров. Сильные: электромагнитные. Слабые: гравитационные = 1: 10-2: 10-10:10-38. Отличие электромаг. и гравит. Взаимодействий, в том, что они плавно убывают с увеличением расстояния. Сильные и слабые взаимодействия ограничены очень малыми расстояниями: 10-16 см для слабых, 10-13 см для сильных. Но на расстояние < 10-16 см слабые взаимодействия уже не являются малоинтенсивными, на расстоянии 10-8 см господствуют электромагнитные силы. Адроны взаимодействуют с помощью кварков. Переносчиками взаимодействия между кварками являются глюоны. Сильные взаимодействия появляются на расстояниях 10-13 см, т. Е. глюоны являются короткодействующими и способны долететь такие расстояния. Слабые взаимодействия осуществляются с помощью полей Хиггса, когда взаимодействие переносится с помощью квантов, которые называются W+,W- - бозоны, а также нейтральные Z0 – бозоны(1983 год). 7) Деление и синтез атомных ядер. Ядра атомов состоят из протонов, которые обозначаются Z и нейтронов N, общее число нуклонов обозначается буквой – А. А= Z+N. Чтобы вырвать нуклон из ядра необходимо затратить энергию, поэтому полная масса и энергия ядра меньше суммы асс и энергий всех его составляющих. Разность энергии называется энергия связи: Есв=(Zmp+Nmn-M)c2 энергия связи нуклонов ядре – Есв. Энергия связи, проходящая на один нуклон, называется удельная энергия связи (Есв/А). Максимальное значение удельная энергия связи принимает для ядер атомов железа. У элементов следующих после железа происходит нарастание нуклонов, и каждый нуклон приобретает все больше соседей. Сильные же взаимодействия являются короткодействующими, это приводит к тому, что при росте нуклонов и при значительном росте нуклонов хим. элемент стремится к распаду (естеств. радиоактивности). Запишем реакции, в которых происходит выделение энергии: 1. При делении ядер с большим числом нуклонов : n+U235→ U236→139La+95Mo+2n медленно движущийся нейтрон поглощается U235(ураном) в результате образуется U236 , который делится на 2 ядра La(лаптам) и Мо(молибден), которые разлетаются с большими скоростями и образуются 2 нейтрона, которые способны вызвать 2 такие реакции. Реакция принимает цепной хар-тер для того чтобы масса исходного топлива достигала критической массы.2. Реакция синтеза легких ядер .d2+d=3H+n, если бы люди сумели обеспечить устойчивый синтез ядер, то они избавили бы себя от энергетических проблем. Дейтерий, содержащийся в воде океана, представляет неисчерпаемый источник дешевого ядерного топлива, и синтезу легких элементов не сопутствует интенсивные радиоактивные явления, как при делении ядер урана.

Тому, кто интересуется этим вопросом, не советую обращаться к материалу Википедии.
Что хорошего мы там прочитаем? Википедия отмечает что «квантовая теория поля» - «это раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы - квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений».

1. Квантовая теория поля: Первый обман. Изучение – это, как ни говори, получение и усвоение информации, которая уже собрана другими учеными. Возможно, имелось в виду «исследование»?

2. Квантовая теория поля: Второй обман. Бесконечно большого числа степеней свободы ни в одном теоретическом примере этой теории нет и не может быть. Переход от конечного числа степеней свободы к бесконечному должен сопровождаться не только количественными, но и качественными примерами. Ученые часто осуществляют обобщения следующего вида: «Рассмотрим N=2, после чего с легкостью обобщим для N = бесконечность». При этом, как правило, если автор решил (или почти решил) задачу для N=2, ему кажется, что он совершил самое трудное.

3. Квантовая теория поля: Третий обман. «Квантовое поле» и «квантованное поле» – это две большие разницы. Как между прекрасной женщиной и приукрашенной женщиной.

4. Квантовая теория поля: Четвертый обман. Насчет превращения микрочастиц. Еще одна теоретическая ошибка.

5. Квантовая теория поля: Пятый обман. Физика элементарных частиц как таковая - не наука, а шаманство.

Читаем далее.
«Квантовая теория поля является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя)».

6. Квантовая теория поля: Шестой обман. Квантовая теория поля не подтверждена экспериментально.

7. Квантовая теория поля: Седьмой обман. Существуют теории, которые в большей степени согласуются с экспериментальными данными, и в их отношении столь же «обоснованно» можно говорить, что они подтверждены экспериментальными данными. Следовательно, квантовая теория поля не является и «единственной» из «подтвержденных» теорий.

8. Квантовая теория поля: Восьмой обман. Квантовая теория поля ничего ровным счетом не способна предсказать. Ни один реальный результат эксперимента не может быть даже «подтвержден» «пост фактум» этой теорией, не говоря уже о том, чтобы что-то можно было бы априорно рассчитать с ее помощью. Современная теоретическая физика на настоящем этапе все «предсказания» осуществляет на основании известных таблиц, спектров и тому подобных фактических материалов, которые пока еще никак не «сшиты» ни одной из официально принятых и признанных теорий.

9. Квантовая теория поля: Девятый обман. При энергиях, существенно превышающих энергию покоя, квантовая теория не только ничего не дает, но и постановка задачи при таких энергиях невозможна в современном состоянии физики. Дело в том, что квантовая теория поля, как и неквантовая теория поля, как и любая из ныне принятых теорий, не может ответить на простые вопросы: «Какова максимальная скорость электрона?» , а также на вопрос «Равна ли она максимальной скорости любой иной частицы?»
Теория относительности Эйнштейна утверждает, что предельная скорость любой частицы равна скорости света в вакууме, то есть эта скорость не может быть достигнута. Но в этом случае правомочен вопрос: «А какая скорость МОЖЕТ быть достигнута?»
Ответа нет. Потому что и утверждение Теории относительности не верно, и получено оно из неверных посылок, неверными математическими выкладками на основе ошибочных представлений о допустимости нелинейных преобразований.

Кстати, вообще не читайте Википедии. Никогда. Мой совет вам.

ОТВЕТ ПИРОТЕХНИКУ

В данном конкретном контексте я написал, что ОБМАНОМ ЯВЛЯЕТСЯ ОПИСАНИЕ КВАНТОВОЙ ТЕОРИИ ПОЛЯ В ВИКИПЕДИИ.
Мой вывод по статье: «Не читайте Википедии. Никогда. Мой совет вам».
Каким образом на основе моего отрицания научности некоторых статей в Википедии вы сделали вывод о том, что я «не люблю ученых»?

Я никогда, кстати, не утверждал, что «Квантовая теория поля – обман».
С точностью до наоборот. Квантовая теория поля – это экспериментально обоснованная теория, которая, естественно, не столь бессмысленна, как Специальная или Общая теория относительности.
НО ВСЕ ЖЕ – квантовая теория ОШИБОЧНА ПО ЧАСТИ ПОСТУЛИРОВАНИЯ тех явлений, которые МОГУТ БЫТЬ ВЫВЕДЕНЫ КАК СЛЕДСТВИЯ.

Квантовый (квантованный – точнее и правильнее) характер излучения горячих тел определяется не квантовой природой поля как таковой, а дискретным характером порождения колебательных импульсов, то есть СЧЕТНЫМ ЧИСЛОМ ПЕРЕХОДОВ ЭЛЕКТРОНОВ с одной орбиты на другую – с одной стороны, и ФИКСИРОВАННЫМ ОТЛИЧИЕМ ЭНЕРГИИ разных орбит.
Фиксированное отличие определяется свойствами движений электронов в атомах и молекулах.
Эти свойства должны исследоваться с привлечением математического аппарата замкнутых динамических систем.
Я это проделал.
См. статьи в конце.
Мной показано, что СТАБИЛЬНОСТЬ ОРБИТ ЭЛЕКТРОНОВ можно объяснить из обычной электродинамики с учетом ограниченной скорости электромагнитного поля. Из этих же условий можно теоретически предсказать геометрические размеры атома водорода.
Максимальный внешний диаметр атома водорода определяется как удвоенный радиус, а радиус соответствует такой потенциальной энергии электрона, которая равна кинетической энергии, вычисленной из соотношения E=mc^2/2 (эм-це-квадрат-пополам).

1. Бугров С.В., Жмудь В.А. Моделирование нелинейных движений в динамических задачах физики // Сборник научных трудов НГТУ. Новосибирск. 2009. 1(55). С. 121 – 126.
2. Zhmud V.A., Bugrov S.V. The modeling of the electron movements inside the atom on the base of the non-quantum physics. // Proceedings of the 18th IASTED International Conference “Applied Simulation and Modeling” (ASM 2009). Sept. 7-9, 2009. Palma de Mallorka, Spain. P.17 – 23.
3. Жмудь В.А. Обоснование нерелятивистского неквантового подхода к моделированию движения электрона в атоме водорода // Сборник научных трудов НГТУ. Новосибирск. 2009. 3(57). С. 141 – 156.

Кстати, среди возможных ответов на вопрос «За что Вы так не любите учёных?»

ПОТОМУ ЧТО Я ЛЮБЛЮ НАУКУ.

А кроме шуток: Ученые не должны стремиться к любви или не любви. Они должны стремиться к истине. Тех, кто стремится к истине, я «люблю умом», не зависимо от того, ученые они, или нет. То есть – ОДОБРЯЮ. Люблю сердцем я вовсе не за это. Не за стремление к истине. Эйнштейн стремился к истине, но не всегда, не везде. Как только он предпочел стремиться к доказательству безошибочности своей теории, он забыл напрочь об истине. После этого как ученый он в моих глазах потускнел довольно изрядно. Надо было бы ему задуматься покрепче о газовой природе гравитационных линз, о «почтовой» природе запаздывания информации – мы же не судим по датам прибытия на письмах времени их отправки! Эти две даты всегда не совпадают. Мы не отождествляем их. С какой же тогда стати отождествлять воспринимаемое время, воспринимаемую скорость и прочее с действительными временем, скоростью и прочим?
Насчет того, что я не люблю читателей? Здравствуйте! Я пытаюсь открыть им глаза. Разве это – не любить?
Я люблю даже тех рецензентов, которые возражают. Причем, тех, кто возражает обоснованно, я особо люблю. Тех же, кто стремится не возразить, а просто отрицать, утверждать обратное безо всяких на то оснований, не вчитываясь в мои аргументы – таких мне просто жаль.
«Зачем они пишут примечание к тому, что даже не прочитали?» – думаю я.

В заключение - шутка для моих читателей, которые устали от длинных рассуждений.

КАК НАПИСАТЬ НОБЕЛЕВСКУЮ РЕЧЬ

1. Получите Нобелевскую премию.
2. Оглянитесь вокруг себя. Вы обнаружите множество добровольных бесплатных помощников, которые сочтут за честь написать за вас эту речь.
3. Прочитайте предложенные четыре варианта. От души посмейтесь. Напишите что угодно – это все равно будет лучше любого из этих вариантов, а они, эти варианты, безусловно, лучше того, что вы можете написать, минуя пункт 1 настоящей последовательности.

А главное, отказываемся замечать, что применимы они лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны.

Хотя нечто подобное уже столетия назад высказывалось восточными философами и мистиками, в западной науке впервые об этом заговорил Эйнштейн. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», - всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью - удивительной и невероятной.

После того как в общих чертах было открыто строение атома и предложена его «планетарная» модель, ученые столкнулись с множеством парадоксов, для объяснения которых появился целый раздел физики - квантовая механика. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах.

Действительно, большинство достижений квантовой механики сопровождаются настолько сложным математическим аппаратом, что он попросту не переводится ни на один из человеческих языков. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием.

Кроме того, Эйнштейн математически показал, что наши понятия времени и пространства иллюзорны. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями.

Планетарная теория. Волна или частица

До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Теория весьма красивая, но возникает ряд противоречий.

Во-первых, почему отрицательно заряженные электроны не «падают» на положительное ядро? Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им - чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние».

Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом - пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле, на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора.

Данные, плохо укладывающиеся в рамки классического подхода, появились задолго до Эйнштейна. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна - это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.

Вероятностные электронные облака. Строение ядра и ядерные частицы

Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью. Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений.

Но тот, кто хочет окончательно понять устройство атома, должен обратиться к его основе, к строению ядра. Составляющие его крупные элементарные частицы - положительно заряженные протоны и нейтральные нейтроны - также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности. К сожалению, такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями.

Теория относительности показала (а проведенные эксперименты доказали), что масса является лишь одной из форм энергии. Энергия - величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки. Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения - таким образом, они и разделятся, и не разделятся одновременно!

Участник вместо наблюдателя

В мире, где понятия пустого пространства, изолированной материи теряют смысл, частица описывается только через ее взаимодействия. Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию - измерению. Так что мы меряем в итоге? И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, - а значит, меняет и ее саму?

В современной физике элементарных частиц все больше нареканий вызывает... сама фигура ученого-наблюдателя. Правомернее было бы называть его «участником».

Наблюдатель-участник необходим не только для измерения свойств субатомной частицы, но и для того, чтобы определить эти самые свойства, ведь и о них можно говорить лишь в контексте взаимодействия с наблюдателем. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся.

Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик - эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения - просто потому, что у нее их не будет. Опишите точно движение частицы - вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.

Принцип неопределенности. Место или импульс, энергия или время

Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее - могут существовать. Они не то чтобы обладают характеристиками, а скорее - могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи.

Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: «Противоположности дополняют друг друга». Математически распределение вероятности представляет собой неравномерные волновые колебания. Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна - расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда (чем точнее можно локализовать частицу в пространстве), тем более неопределенной становится длина волны (тем меньше можно сказать об импульсе частицы). Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.

Это фундаментальное свойство математически выводится из свойств волны и называется принципом неопределенности. Принцип касается и других характеристик элементарных частиц. Еще одна такая взаимосвязанная пара - это энергия и время протекания квантовых процессов. Чем быстрее проходит процесс, тем более неопределенно количество энергии, задействованной в нем, и наоборот - точно охарактеризовать энергию можно только для процесса достаточной продолжительности.

Итак, мы поняли: о частице нельзя сказать ничего определенного. Она движется туда, или не туда, а верней, ни туда и ни сюда. Ее характеристики такие или сякие, а точнее – и не такие, и не сякие. Она находится здесь, но может быть и там, а может и не быть нигде. Так существует ли она вообще?

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама