THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.

Исследования американских астрономов подтверждают информацию из книг Анастасии Новых. Скорость расширения Вселенной оказалась гораздо выше, чем показывали предыдущие расчёты. Учёные приходят к выводу, что данный факт может указывать на наличие некоего тёмного излучения или на неполноту теории относительности. принята к публикации в Astrophysical Journal.

Американский астрофизик, нобелевский лауреат Адам Рисс (Adam Riess) отмечает, что данное открытие может помочь понять, чем является тёмная материя, а также тёмная энергия и тёмное излучение. Это считается довольно важным, поскольку по оценкам современных учёных, различные комбинации тёмной материи составляют более 95% от общей массы Вселенной .

Ранее для измерения скорости расширения Вселенной изучались далёкие сверхновые и использовались данные зондов WMAP и Planck, с помощью которых изучают микроволновое "эхо" Большого Взрыва. В новом исследовании астрофизики решили изменить тактику работы и начали наблюдать за относительно близкими, переменными звёздами соседних галактик. Эти звёзды называют цефеидами. Они представляют интерес для исследователей, поскольку их пульсацию можно использовать для точного вычисления расстояний до далёких космических объектов. Группа Адама Рисса при помощи телескопа "Хаббл" наблюдала за такими звёздами в 18 соседних галактиках, где недавно произошли взрывы сверхновых первого типа. В результате исследований удалось вычислить расстояние до данных объектов, что помогло уточнить значение постоянной Хаббла и уменьшить погрешность при её вычислении с 3% до 2,4%. В результате оказалось, что две галактики, находящиеся друг от друга на расстоянии 3 миллионов световых лет, разлетаются со скоростью 73 километра в секунду. Таким образом, был получен неожиданный результат: скорость оказалась заметно выше, чем при подсчётах, полученных с помощью WMAP и Planck. Это значение скорости не могут объяснить существующие научные взгляды о механизме зарождения Вселенной и природе тёмной энергии.

Фотографии NASA/ ESA/ A.Riess

Адам Рисс предполагает, что такая высокая скорость расширения Вселенной может говорить о том, что в процессе "разгона", помимо тёмной энергии, участвует ещё одна невидимая субстанция . Учёный назвал её "тёмным излучением" (dark radiation). По мнению исследователей, это "излучение" по своим свойствам похоже на так называемые стерильные нейтрино, и оно существовало в первые дни жизни Вселенной, когда в ней преобладала энергия, а не материя. Учёные надеются, что дальнейшие исследования при помощи телескопа "Хаббл" и повышение точности наблюдений помогут понять, действительно ли нужно "тёмное излучение" для объяснения неожиданных результатов в исследованиях скорости расширения Вселенной.

То, что Вселенная не стоит на месте, а постепенно расширяется, в 1929 доказал астроном Эдвин Хаббл. Он совершил это открытие, наблюдая за движением далёких галактик. В конце 1990-х годов, исследуя сверхновые первого типа, астрофизикам удалось выяснить, что Вселенная расширяется не с постоянной скоростью, а с ускорением. Тогда был сделан вывод, что причиной этому является тёмная энергия.

Интересно, что результаты современных исследований в области астрономии зачастую подтверждают информацию из древних преданий многих народов планеты. Эти памятники культуры хранят в себе поразительную информацию о рождении Вселенной посредством Первичного Звука (который до сих пор наблюдается в виде фона определённых излучений), а также знания о мироустройстве. Достаточно вспомнить широко известные космогонические мифы догонов и бамбара. Частично понять информацию, которую сохранил этот народ, удалось совсем недавно, благодаря открытиям в астрономии. Но в мифах догонов сохранилась и такая информация , что уровень развития современной физики ещё не в состоянии дать ей научное объяснение.

Возвращаясь к вопросу расширения Вселенной, стоит отметить, что результаты нового исследования подтверждают то, что было обнародовано много лет назад в книгах Анастасии Новых , причём, совершённое открытие является лишь малой частью знаний, заложенных в в этих книгах. Так, например, в книгах "Сэнсэй-4" и "АллатРа" отмечается, что движение Вселенной происходит по спирали. Вообще, спиралевидный ход движения является перспективным направлением для изучения, он проявляется во всех процессах материального мира. Но самое интересное, что в книгах писательницы описан не только процесс зарождения Вселенной, но и предоставлена информация о том, что происходит и произойдёт в результате её расширения. Также в книгах даны ценные знания о силе, которая лежит в основе материи и всех её взаимодействий, проведен анализ современных научных взглядов в области изучения астрономических явлений, анализ древних преданий со всего мира и многое другое, что может стать толчком для эпохальных открытий в современной науке.

Например, в книге "АллатРа" описана довольно интересная информация об общей массе Вселенной:

Ригден: ...Количество материи (её объём, плотность и так далее), да и сам факт её присутствия во Вселенной не влияют на общую массу Вселенной. Люди привыкли воспринимать материю с присущей ей массой только с позиции трёхмерного пространства. Но чтобы глубже понять смысл данного вопроса, необходимо знать о многомерности Вселенной. Объём, плотность и другие характеристики видимой, то есть привычной для людей материи во всём её разнообразии (включая и так называемые ныне «элементарные» частицы) изменяются уже в пятом измерении. Но масса остаётся неизменной, так как является частью общей информации о «жизни» этой материи до шестого измерения включительно. Масса материи — это всего лишь информация о взаимодействии одной материи с другой в определённых условиях. Как я уже говорил, упорядоченная информация создаёт материю, задаёт ей свойства, в том числе и массу. С учётом многомерности материальной Вселенной, её масса всегда равна нулю. Суммарная масса материи во Вселенной будет огромна лишь для Наблюдателей третьего, четвёртого и пятого измерений...

Анастасия: Масса Вселенной равна нулю? Это же указывает на иллюзорность мира, как такового, о чём говорилось во многих древних легендах народов мира...

Ригден: Наука будущего, если выберет указанный в твоих книгах путь, сможет вплотную подойти к ответам на вопросы о происхождении Вселенной и её искусственного создания.

Читать продолжение в книге "АллатРа", стр. 42

Согласно существующим в науке взглядам, "если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света".

Имеется и другой взгляд на процесс расширения Вселенной, который можно проследить и мифах народов мира, где говорилось и о сокращении дней, и о Первичном Звуке. В книге "Сэнсэй-4" можно прочитать следующее:

— ...В ближайшем будущем человечество столкнётся ещё с одним феноменом Вселенной. За счёт возрастающего ускорения Вселенной, в связи с истощением силы Аллата , человечество будет ощущать стремительное сокращение времени. Феномен будет заключаться в том, что условные двадцать четыре часа в сутки как были, так и останутся, но время будет пролетать гораздо быстрее. И люди будут чувствовать это стремительное сокращение временных промежутков как на физическом уровне, так и на уровне интуитивного восприятия.
— Так это будет связано именно с расширением Вселенной? — уточнил Николай Андреевич.
— Да. С возрастающим ускорением. Чем больше расширяется Вселенная, тем быстрее бежит время и так до полной аннигиляции материи.

Благодаря учёным, которые заинтересовались знаниями из книг А.Новых и начали вникать в их суть, недавно вышел доклад "ИСКОННАЯ ФИЗИКА АЛЛАТРА" . Как написано в докладе, основная закладка знаний для научных исследований была сделана автором в работах "АллатРа" и "Эзоосмос". В докладе учёных информация из книг автора дополняется новыми данными. В частности, появляются такие понятия как эзоосмическая решётка, септонное поле, септон, которые являются основополагающими для понимания происходящих в мире процессов как на микро-, так и на макроуровне.

"В основе материальной Вселенной находится своеобразный "пространственный каркас", нематериальная структура - ЭЗООСМИЧЕСКАЯ РЕШЁТКА.В представлении жителя 3-х мерного измерения эта энергетическая "конструкция" в целом напоминала бы по внешнему очертанию сильно уплощенный объект, приблизительно похожий на плоский кирпич, высота боковой грани которого составляет 1/72 от величины её основания. Другими словами, эзоосмическая решётка обладает плоской геометрией. Возможность расширения материальной Вселенной ограничена размерами эзоосмической решётки.

В пределах эзоосмической решётки существует 72 измерения (примечание: подробнее о 72 измерениях см. в книге "АллатРа"). Всё, что современной наукой именуется "материальной Вселенной", существует лишь в пределах первых 6 измерений, а остальные 66 измерений - это, по своей сути, контролирующие надстройки, сдерживающие "материальный мир" в определённых ограничительных рамках - шести измерениях. Согласно древним знаниям, 66 измерений (с 7 по 72 включительно) тоже относятся к материальному миру, но не являются таковыми по своей сути.

За пределами эзоосмической решётки, что также утверждается в древних священных преданиях разных народов мира, находится духовный мир - качественно иной мир, не имеющий ничего общего с материальным миром, его законами и проблемами."

В 1920-м году Эдвин Хаббл получил две вещи, позволившие ему революционизировать то, как люди видели Вселенную. Одной вещью был самый большой на тот момент телескоп в мире, а другой - интересная находка его коллеги-астронома Весто Слайфера, который увидел в туманности - то, что мы теперь называем галактиками - и был заинтригован их свечением, бывшим намного краснее, чем можно было предположить. Он связал это с красным смещением.

Представьте, что вы и другой человек стоите около длинной веревки, и каждую секунду вы её дёргаете. В это время по верёвке идёт волна, дающая другому человеку знать, что верёвка дёрнулась. Если бы вы быстрым шагом пошли прочь от этого человека, расстояние, которые вы покрываете, волне каждую секунду пришлось бы преодолевать, и, с точки зрения другого, верёвка станет дёргаться уже раз в 1,1 секунды. Чем быстрее вы идёте, тем больше времени пройдёт для другого человека между рывками.

То же самое происходит с волнами света: чем дальше источник свечения находится от наблюдателя, тем реже становятся пики волн, и это сдвигает их в красную часть светового спектра. Слайфер пришёл к выводу, что туманности кажутся красными, потому что движутся прочь от Земли.


Эдвин Хаббл

Хаббл же взял новый телескоп и начал искать красное смещение. Он обнаружил его повсеместно, но одни звёзды казались в определённой степени «краснее» других: некоторые звёзды и галактики лишь слегка смещались в сторону красного, но иногда красное смещение было максимальным. Собрав большое количество данных, Хаббл построил диаграмму, показывающую, что красное смещение объекта зависит от его удалённости от Земли.

Таким образом, в XX-м веке было доказано , что Вселенная расширяется. Большинство учёных, глядя на данные, предположили, что расширение замедляется. Некоторые считали, что Вселенная будет постепенно расширяться до некоего предела, который есть, но которого она, тем не менее, никогда не достигнет, а другие думали, что по достижении этого предела Вселенная начнёт сжиматься. Однако астрономы нашли способ решить вопрос: для этого им понадобились новейшие телескопы и небольшая помощь Вселенной в виде сверхновых типа 1А.


Поскольку мы знаем, как яркость меняется в зависимости от расстояния, то знаем и то, как далеко от нас находятся эти сверхновые и сколько лет свет путешествовал, прежде чем мы смогли его увидеть. И когда мы смотрим на красное смещение света, мы знаем, насколько Вселенная расширилась за это время.

Когда астрономы смотрели на далёкие и древние звёзды, они заметили, что расстоянии не совпадало со степенью расширения. Свет от звёзд шёл к нам дольше, чем ожидалось, как будто расширение в прошлом происходило медленнее - таким образом было установлено, что расширение Вселенной ускоряется, а не замедляется.

Крупнейшие научные открытия 2014-го года

10 главных вопросов о Вселенной, ответы на которые учёные ищут прямо сейчас

Были ли американцы на Луне?

У России нет возможностей для освоения человеком Луны

10 способов, которыми открытый космос может убить человека

Посмотрите на этот впечатляющий вихрь мусора, которым окружена наша планета

Послушайте звучание космоса

Семь чудес Луны

10 вещей, которые люди зачем-то отправляли в стратосферу

Природа темной энергии является предметом ожесточенных споров. Открытый чуть менее чем тридцать лет назад, невидимый компонент Вселенной все еще не получил единого объяснения. Пришло время разобраться: почему темная энергия вызывает столько проблем, и как ученые пытаются ее детектировать?

Форма вселенной

С хорошей степенью точности наша Вселенная пространственно-однородна и изотропна – она не содержит «особых» точек и направлений, относительно которых ее свойства меняются. Такое пространство создать непросто: необходимо поддерживать определенную плотность энергии всех входящих в нее компонентов.

Уже в 1980-х годах ученым была точно известна так называемая критическая плотность, обеспечивающая пространственно-плоскую Вселенную. Но полученные результаты измерения количества барионного вещества в галактических кластерах совместно с плотностью, которую мог обеспечить Большой взрыв, скорее указывали на низкую плотностью материи в пространстве.

Также о недостатке материи говорил возраст шаровых скоплений – весьма немолодых конгломератов звезд. Оказалось, что такие скопления родились как минимум 10 миллиардов лет назад: но при наблюдаемом количестве вещества после Большого взрыва расширение Вселенной должно было постепенно замедляться и в целом оценка ее возраста была меньше. Наш мир оказывался моложе, чем его составляющие.

Сверхновые типа Ia

Окончательно убедить ученых в необходимости поиска нового источника энергии во Вселенной смогли сверхновые типа Iа – звезды, жизненный цикл которых заканчивается вспышкой, настолько интенсивной, что ее возможно наблюдать на Земле.

Две команды ученых, Supernova Cosmology Project, руководителем которого был Сол Перлмуттер, и High-Z Supernova Research Team, возглавляемый Брайаном Шмидтом, предложили процедуру использования самых мощных телескопов в мире для изучения сверхновых.

Прорыв совершил Марк Филлипс, астроном, работающий в Чили: он предложил новый способ определения внутренней светимости сверхновых типа Ia, которая напрямую связана с расстоянием до небесного тела. С другой стороны, расстояние до некоторых из звезд можно было определить с помощью закона Хаббла, описывающего изменение длины волны излучаемых объектом фотонов вследствие расширения Вселенной.

Оказалось, что сверхновые в далеких галактиках гораздо более «бледные»: их светимость была сильно меньше предсказанной исходя из расстояния, рассчитанного по закону Хаббла. Иными словами, сверхновые должны были находится гораздо дальше: так ученые впервые предположили, что Вселенная не просто расширяется, а с некоторым ускорением.

Наблюдение далеких сверхновых типа Ia в одночасье перевернуло представление ученых о Вселенной. Исследования показали, что около 70 % плотности энергии составляет новый, неизвестный компонент с отрицательным давлением.

Термин «темная энергия» предложил позднее космолог Майкл Тeрнер, а перед учеными встала новая загадка: объяснить природу еe возникновения.

Можно ли объяснить ускоренное расширение Вселенной?

В настоящее время существуют три класса теорий, претендующих на роль темной энергии. Первый вариант постулирует наличие энергии у вакуума: по сути дела это стало возвращением к космологической постоянной, предложенной Эйнштейном для поддержания статической Вселенной. В новом варианте плотность вакуума одинакова во всем пространстве, но не исключается, что она могла меняться со временем.

Второй вариант, получивший название квинтэссенции, предложенный немецким физиком Кристофом Веттерихом, предполагает наличие нового поля – фактически, новых частиц, вносящих вклад в общую плотность Вселенной. Энергия таких частиц уже не только изменяется со временем, но и в пространстве: для того, чтобы сильные колебания плотности темной энергии отсутствовали, частицы должны быть достаточно легкими. В этом, пожалуй, состоит основная проблема квинтэссенции: предложенные варианты частиц, согласно основным принципам современной физики, не могут оказываться легкими, а наоборот, приобретать значительную массу, и на данный момент никаких указаний на этот сценарий не получено.

К третьему варианту относятся различные теории модифицированной гравитации, в которой взаимодействие между массивными объектами не подчиняется стандартным законам Общей теории относительности (ОТО). Существует великое множество модификаций гравитации, но к настоящему времени отклонения от ОТО в экспериментах не были обнаружены.

Темная энергия, несмотря на огромный вклад в состояние Вселенной, упорно «прячется» от наблюдателей, и изучаются лишь косвенные проявления ее свойств. Среди них основную роль играют барионные акустические осцилляции, анизотропия реликтового излучения и слабое гравитационное линзирование.

Барионные акустические осцилляции

Барионные акустические осцилляции, или, сокращенно, БАО – наблюдаемое периодическое изменение плотности обычного, барионного вещества на больших масштабах. В первоначальной, горячая космической плазме, состоявшей из барионов и фотонов, конкурировали два процесса: гравитационное притяжение, с одной стороны, и отталкивание за счет высвобождения энергии при реакциях между веществом и фотонами – с другой. Подобное «противостояние» приводило к акустическим колебаниями, подобно звуковым волнам в воздухе между областями с различной плотностью.

При остывании Вселенной в определенный момент произошла рекомбинация – отдельным частицам стало выгоднее образовывать атомы, а фотоны фактически стали «свободными» и отделились от вещества. При этом вследствие колебаний вещество успело разлететься на некоторое определенное расстояние, называемое звуковым горизонтом. Последствия наличия горизонта в настоящее время наблюдаются в распределении галактик во Вселенной.

Сам по себе звуковой горизонт – величина, предсказываемая космологически. Он напрямую зависит от параметра Хаббла, определяющего скорость расширения Вселенной, который в свою очередь определяется и параметрами темной энергии.

Реликтовое излучение

Микроволновое реликтовое излучение – дальний «отголосок» Большого взрыва, равномерно заполняющие Вселенную фотоны с практически одинаковой энергией. В настоящее время именно реликтовое излучение является основным источником ограничений на различные космологические модели.

Однако, с увеличением чувствительности инструментов было обнаружено, что реликтовое излучение анизотропно и имеет неоднородности – с каких-то направлений приходит несколько больше фотонов, чем с других. Такое различие в том числе также вызвано наличием неоднородностей в распределении вещества, и масштаб распределения «горячих» и «холодных» пятен на небе определяется свойствами темной энергии.

Слабое гравитационное линзирование

Еще один важный для исследования темной энергии эффект – гравитационное темное линзирование – состоит в отклонении пучков света в поле вещества. Линзирование одновременно позволяет изучать структуру Вселенной и её геометрию, то есть форму пространства-времени.

Существуют различные виды гравитационного линзирования, среди которых наиболее удобным для изучения темной энергии является слабое линзирование за счет отклонения света крупномасштабной структурой Вселенной – это приводит к размыванию изображений далеких галактик.

Темная энергия одновременно влияет как на свойства источника, например расстояние до него, так и на свойства искажающего картинку пространства. Поэтому слабое линзирование, с учетом постоянно обновляющихся астрономических данных, является вдвойне важным способом постановки ограничений на свойства темной энергии.

Темная энергия – по прежнему в тени

Подведем итоги, что же удалось узнать физикам за практически тридцатилетний стаж изучения темной энергии?

С большой точностью известно, что темная энергия обладает отрицательным давлением: более того, уравнение зависимости давления от плотности энергии определено с большой достоверностью, и такими свойствами не обладает ни одна другая известная нам среда.

Темная энергия пространственно-однородна, а ее вклад в плотность энергии стал доминирующим относительно недавно – около пяти миллиардом лет назад; при этом она влияет одновременно и на расстояния между объектами и на саму структуру Вселенной.

Различные космологические эксперименты позволяют изучать темную энергию, но в настоящее время ошибки измерения слишком велики, чтобы делать точные предсказания. Пока что ученые еще явно далеки от ответа на вопрос о природе темной энергии, которая многие миллиарды лет тайно управляет устройством Вселенной.

Когда мы смотрим на далекую Вселенную, мы всюду видим галактики - во всех направлениях, на миллионы и даже миллиарды световых лет. Поскольку есть два триллиона галактик, которые мы могли бы наблюдать, сумма всего, что за ними, больше и круче самых смелых наших представлений. Один из самых интересных фактов состоит в том, что все галактики, которые мы когда-либо наблюдали, подчиняются (в среднем) одним и тем же правилам: чем они дальше от нас, тем быстрее они от нас и удаляются. Это открытие, сделанное Эдвином Хабблом и его коллегами еще в 1920-х годах, привело нас к картине расширяющейся Вселенной. Но что с того, что она расширяется? Наука знает, а теперь и вы узнаете.

На первый взгляд этот вопрос может показаться здравым. Потому что все, что расширяется, обычно состоит из вещества и существует в пространстве и времени Вселенной. Но сама Вселенная - это пространство и время, содержащее материю и энергию в себе. Когда мы говорим, что «Вселенная расширяется», мы имеем в виду расширение самого пространства, в результате которого отдельные галактики и скопления галактик удаляются друг от друга. Проще всего было бы представить шарик теста с изюмом внутри, который выпекается в печи, считает Этан Зигель.

Модель расширяющейся «булочки» Вселенной, в которой относительные расстояния увеличиваются по мере расширения пространства

Это тесто - ткань пространства, а изюминки - связанные структуры (вроде галактик или скоплений галактик). С точки зрения любой изюминки, все остальные изюмы будут от нее отходить, и чем они дальше - тем быстрее. Только в случае Вселенной печи и воздуха за пределами теста не существует, есть только тесто (пространство) и изюм (вещество).

Красное смещение создают не просто удаляющиеся галактики, а скорее пространство между нами

Откуда мы знаем, что это пространство расширяется, а не галактики удаляются?

Если вы видите, что во всех направлениях от вас удаляются объекты, есть только одна причина, способная это объяснить: расширяется пространство между вами и этими объектами. Также можно было бы предположить, что вы находитесь возле центра взрыва, и многие объекты просто находятся дальше и удаляются быстрее, потому что получили больше энергии взрыва. Если бы это было так, мы могли бы доказать это двумя способами:

  • На больших расстояниях и высоких скоростях будет меньше галактик, поскольку со временем они сильно распространились бы в пространстве
  • Отношение красного смещения и расстояния будет принимать конкретную форму на больших расстояниях, которая будет отличаться от формы, если бы расширялась ткань пространства

Когда мы смотрим на большие расстояния, мы находим, что дальше во Вселенной плотность галактик выше, чем ближе к нам. Это согласуется с картиной, в которой пространство расширяется, потому что смотреть дальше - то же самое, что смотреть в прошлое, где произошло меньше расширения. Мы также обнаруживаем, что отдаленные галактики имеют отношение красного смещения и расстояния, соответствующее расширению пространства, и совсем нет - если бы галактики просто быстро удалялись от нас. Наука может ответить на этот вопрос двумя разными способами, и оба ответа поддерживают расширение Вселенной.

Всегда ли Вселенная расширялась с одной скоростью?

Мы называем ее постоянной Хаббла, но она является постоянной только в пространстве, а не во времени. Вселенная в настоящий момент расширяется медленнее, чем в прошлом. Когда мы говорим о скорости расширения, мы говорим о скорости на единицу расстояния: около 70 км/c/Мпк сегодня. (Мпк - это мегапарсек, примерно 3 260 000 световых лет). Но скорость расширения зависит от плотностей всех разных вещей во Вселенной, включая материю и излучение. По мере расширения Вселенной материя и излучение в ней становятся менее плотными, а вместе с падением плотности падает и скорость расширения. Вселенная расширялась быстрее в прошлом и замедляется со времен Большого Взрыва. Постоянная Хаббла - это неверное название, ее стоило бы назвать параметром Хаббла.

Далекие судьбы Вселенной предлагают разные возможности, но если темная энергия действительно постоянна, как показывают данные, мы будем следовать красной кривой

Будет ли Вселенная расширяться вечно или когда-нибудь остановится?

Несколько поколений астрофизики и космологи ломали голову над этим вопросом, и ответить на него можно, только определив скорость расширения Вселенной и все типы (и количества) энергии, присутствующие в ней. Мы уже успешно измерили, сколько имеется обычной материи, излучения, нейтрино, темной материи и темной энергии, а также скорость расширения Вселенной. Основываясь на законах физики и произошедшем в прошлом, складывается впечатление, что Вселенная будет расширяться вечно. Хотя вероятность этого не 100%; если нечто вроде темной энергии будет вести себя иначе в будущем по сравнению с прошлым и настоящим, все наши выводы придется пересмотреть.

Галактики движутся быстрее скорости света? Разве это не запрещено?

С нашей точки зрения, расширяется пространство между нами и удаленной точкой. Чем дальше она от нас, тем быстрее, как нам кажется, она удаляется. Даже если скорость расширения была бы крошечной, далекий объект однажды пересек бы порог любой предельной скорости, потому что скорость расширения (скорость на единицу расстояния) многократно умножилась бы при достаточном расстоянии. ОТО одобряет такой сценарий. Закон того, что ничто не может двигаться быстрее скорости света, применяется только к движению объекта через пространство, а не к самому расширению пространства. В реальности сами галактики движутся на скорости всего в несколько тысяч километров в секунду, что намного ниже предела в 300 000 км/с, установленного скоростью света. Именно расширение Вселенной вызывает рецессию и красное смещение, а не истинное движение галактики.

В пределах наблюдаемой Вселенной (желтый круг) находится приблизительно 2 триллиона галактик. Галактики, которые находятся ближе, чем на треть пути до этой границы, мы никогда уже не сможем догнать из-за расширения Вселенной. Для освоения силами людей открыто всего 3% объема Вселенной

Расширение Вселенной является необходимым следствием того, что материя и энергия наполняют пространство-время, которое подчиняется законам общей теории относительности. Пока есть материя, есть и гравитационное притяжение, так что либо гравитация победит и все снова сожмется, либо гравитация проиграет и победит расширение. Нет никакого центра расширения и нет ничего вне пространства, которое расширяется; именно сама ткань Вселенной расширяется. Что самое интересное, даже если бы мы покинули Землю на скорости света сегодня, мы смогли бы посетить всего 3% галактик в наблюдаемой Вселенной; 97% из них уже вне зоны нашей досягаемости. Вселенная сложна.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама